• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FeCrVTa0.4W0.4高熵合金氮化物薄膜的微观结构与性能

王子鑫 张勇

王子鑫, 张勇. FeCrVTa0.4W0.4高熵合金氮化物薄膜的微观结构与性能[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.09.28.004
引用本文: 王子鑫, 张勇. FeCrVTa0.4W0.4高熵合金氮化物薄膜的微观结构与性能[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.09.28.004
WANG Zi-xin, ZHANG Yong. Microstructure and properties of FeCrVTa0.4W0.4 high-entropy alloy nitride films[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.09.28.004
Citation: WANG Zi-xin, ZHANG Yong. Microstructure and properties of FeCrVTa0.4W0.4 high-entropy alloy nitride films[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.09.28.004

FeCrVTa0.4W0.4高熵合金氮化物薄膜的微观结构与性能

doi: 10.13374/j.issn2095-9389.2020.09.28.004
基金项目: 区域联合基金资助项目(2019B1515120020);中央高校基本科研业务费资助项目(FRF-MP-19-013)
详细信息
    通讯作者:

    E-mail:drzhangy@ustb.edu.cn

  • 中图分类号: TG139

Microstructure and properties of FeCrVTa0.4W0.4 high-entropy alloy nitride films

More Information
  • 摘要: 实验利用单靶射频磁控溅射技术,在单晶硅基底上,制备了两个系列FeCrVTa0.4W0.4高熵合金氮化物薄膜,即FeCrVTa0.4W0.4氮化物成分梯度多层薄膜和(FeCrVTa0.4W0.4)Nx单层薄膜,其中,多层薄膜用于太阳光谱选择性吸收薄膜。通过扫描电子显微镜(SEM)、X射线衍射仪(XRD)、纳米力学探针、原子力显微镜(AFM)、紫外−可见分光光度计、接触角测量仪和四探针测试台对FeCrVTa0.4W0.4高熵合金氮化物薄膜进行微观结构分析以及性能表征。结果表明:在不通入氮气时,薄膜为非晶结构,当氮气含量升高后,转变为面心立方固溶体结构;当表层氮气流量为15 mL·min−1时,FeCrVTa0.4W0.4氮化物多层薄膜及单层薄膜均具有最佳的力学性能,其中,多层薄膜的硬度为22.05 GPa,模量为287.4 GPa,单层薄膜的硬度为22.8 GPa,模量为280.7 GPa,随着表层氮气含量的继续增加,力学性能下降;FeCrVTa0.4W0.4氮化物成分梯度多层薄膜在300~800 nm波长范围内均具有太阳光谱选择吸收性,当氮化物薄膜层数较少时具有较好的疏水性;(FeCrVTa0.4W0.4)Nx单层薄膜随着氮气含量的增加,薄膜方块电阻增加。
  • 图  1  FeCrVTa0.4W0.4氮化物成分梯度多层薄膜的截面及表面显微照片。(a)N2-0截面;(b)N2-0表面;(c)N2-1截面;(d)N2-1表面;(e) N2-2截面;(f)N2-2表面;(g)N2-3截面;(h)N2-3表面

    Figure  1.  Cross-sectional and plane-view micrograph of FeCrVTa0.4W0.4 nitride composition gradient multilayer films: cross-section (a) and plane-view (b) of N2-0; cross-section (c) and plane-view (d) of N2-1; cross-section (e) and plane-view (f) of N2-2; cross-section (g) and plane-view (h) of N2-3

    图  2  不同氮气流量下(FeCrVTa0.4W0.4)Nx单层薄膜的截面及表面显微照片。(a)N2-15截面;(b)N2-15表面;(c)N2-30截面;(d)N2-30表面;(e)N2-45截面;(f)N2-45表面

    Figure  2.  Cross-sectional and plane-view micrograph of (FeCrVTa0.4W0.4)Nx single-layer films at different N2 flows: cross-section (a) and plane-view (b) of N2-15; cross-section (c) and plane-view (d) of N2-30; cross-section (e) and plane-view (f) of N2-45

    图  3  FeCrVTa0.4W0.4氮化物成分梯度多层薄膜的AFM表面形貌。(a) N2-0;(b)N2-1;(c)N2-2;(d)N2-3

    Figure  3.  AFM surface morphology of FeCrVTa0.4W0.4 nitride composition gradient multilayer films: (a) N2-0; (b) N2-1; (c) N2-2; (d) N2-3

    图  4  不同氮气流量下(FeCrVTa0.4W0.4)Nx单层薄膜的AFM表面形貌。(a)N2-15;(b)N2-30;(c)N2-45

    Figure  4.  AFM surface morphology of (FeCrVTa0.4W0.4)Nx single-layer films at different N2 flows: (a) N2-15; (b) N2-30; (c) N2-45

    图  5  FeCrVTa0.4W0.4氮化物薄膜的XRD衍射图。(a)FeCrVTa0.4W0.4氮化物成分梯度多层薄膜;(b) (FeCrVTa0.4W0.4)Nx单层薄膜

    Figure  5.  XRD diffraction patterns of FeCrVTa0.4W0.4 nitride films: (a)FeCrVTa0.4W0.4 nitride composition gradient multilayer films; (b) (FeCrVTa0.4W0.4)Nx single-layer films

    图  6  FeCrVTa0.4W0.4氮化物薄膜的硬度和模量。(a) FeCrVTa0.4W0.4氮化物成分梯度多层薄膜;(b) (FeCrVTa0.4W0.4)Nx单层薄膜

    Figure  6.  Hardness and modulus of FeCrVTa0.4W0.4 nitride films: (a) FeCrVTa0.4W0.4 nitride composition gradient multilayer films; (b) (FeCrVTa0.4W0.4)Nx single-layer films

    图  7  FeCrVTa0.4W0.4氮化物成分梯度多层梯度薄膜在不同波长下的反射率

    Figure  7.  Reflectivity ratio of FeCrVTa0.4W0.4 nitride composition gradient multilayer films at different wavelengths

    图  8  FeCrVTa0.4W0.4氮化物成分梯度多层薄膜的水滴图像。(a)N2-0;(b)N2-1;(c)N2-2;(d)N2-3

    Figure  8.  Water droplet image of FeCrVTa0.4W0.4 nitride composition gradient multilayer films: (a)N2-0; (b) N2-1; (c) N2-2; (d) N2-3

    图  9  不同氮气流量下(FeCrVTa0.4W0.4)Nx单层薄膜的方块电阻

    Figure  9.  Square resistance of (FeCrVTa0.4W0.4)Nx single-layer films at different N2 flows

    表  1  FeCrVTa0.4W0.4氮化物成分梯度多层薄膜制备参数

    Table  1.   Preparation parameters of FeCrVTa0.4W0.4 nitride composition gradient multilayer films

    Number of film layerAr flow/
    (mL·min−1)
    N2 flow/
    (mL·min−1)
    Time/minRepresentation
    1130090N2-0
    2130/1300/1540/40N2-1
    3130/130/1300/15/3040/40/40N2-2
    4130/130/130/1300/15/30/4540/40/40/40N2-3
    下载: 导出CSV

    表  2  (FeCrVTa0.4W0.4)Nx单层薄膜制备参数

    Table  2.   Preparation parameters of (FeCrVTa0.4W0.4)Nx single-layer films

    Number of film layerAr flow/
    (mL·min−1)
    N2 flow/
    (mL·min−1)
    Time/minRepresentation
    1130090N2-0
    11301560N2-15
    11303060N2-30
    11304560N2-45
    下载: 导出CSV

    表  3  FeCrVTa0.4W0.4氮化物成分梯度多层薄膜在不同波长下的吸收率

    Table  3.   Absorptivity of FeCrVTa0.4W0.4 nitride composition gradient multilayer films at different wavelengths

    Different wavelength ranges/nmAbsorptivity/%
    N2-0N2-1N2-2N2-3
    625–76038.0649.6766.4679.13
    600–62540.6952.3869.0781.54
    580–60040.6052.6869.6282.05
    490–58043.6256.2672.3684.15
    450–49050.5962.0576.5486.86
    435–45049.4165.5378.8388.17
    390–43559.5670.6482.0289.82
    300–80048.7859.7274.0684.29
    下载: 导出CSV
  • [1] Feng X B, Zhang J Y, Wang Y Q, et al. Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films. Int J Plast, 2017, 95: 264 doi: 10.1016/j.ijplas.2017.04.013
    [2] Sohn S, Liu Y H, Liu J B, et al. Noble metal high entropy alloys. Scripta Mater, 2017, 126: 29 doi: 10.1016/j.scriptamat.2016.08.017
    [3] Liu S, Gao M C, Liaw P K, et al. Microstructures and mechanical properties of AlxCrFeNiTi0.25 alloys. J Alloys Compd, 2015, 619: 610 doi: 10.1016/j.jallcom.2014.09.073
    [4] Takeuchi A, Amiya K, Wada T, et al. High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. JOM, 2014, 66(10): 1984 doi: 10.1007/s11837-014-1085-x
    [5] Li D Y, Li C X, Feng T, et al. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Mater, 2017, 123: 285 doi: 10.1016/j.actamat.2016.10.038
    [6] Li D Y, Zhang Y. The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics, 2016, 70: 24 doi: 10.1016/j.intermet.2015.11.002
    [7] Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345(6201): 1153 doi: 10.1126/science.1254581
    [8] Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011, 19(5): 698 doi: 10.1016/j.intermet.2011.01.004
    [9] 吴炳乾, 饶湖常, 张冲, 等. Si含量对FeCoCr0.5NiBSix高熵合金涂层组织结构和耐磨性的影响. 表面技术, 2015, 44(12):85

    Wu B Q, Rao H C, Zhang C, et al. Effect of silicon content on the microstructure and wear resistance of FeCoCr0.5 NiBSix high-entropy alloy coatings. Surf Technol, 2015, 44(12): 85
    [10] Butler T M, Weaver M L. Influence of annealing on the microstructures and oxidation behaviors of Al8(CoCrFeNi)92, Al15(CoCrFeNi)85, and Al30(CoCrFeNi)70 high-entropy alloys. Metals, 2016, 6(9): 222 doi: 10.3390/met6090222
    [11] 谢红波, 刘贵仲, 郭景杰, 等. 添加Al对AlxFeCrCoCuTi高熵合金组织与高温氧化性能的影响. 稀有金属, 2016, 40(4):315

    Xie H B, Liu G Z, Guo J J, et al. Microstructure and high temperature oxidation properties of AlxFeCrCoCuTi high-entropy alloys with different Al contents. Rare Met, 2016, 40(4): 315
    [12] 谢红波, 刘贵仲, 郭景杰. Mn、V、Mo、Ti、Zr元素对AlFeCrCoCu-X高熵合金组织与高温氧化性能的影响. 中国有色金属学报, 2015, 25(1):103 doi: 10.1016/S1003-6326(15)63584-1

    Xie H B, Liu G Z, Guo J J, et al. Effects of Mn, V, Mo, Ti, Zr elements on microstructure and high temperature oxidation performance of AlFeCrCoCu-X high-entropy alloys. Chin J Nonferrous Met, 2015, 25(1): 103 doi: 10.1016/S1003-6326(15)63584-1
    [13] Li P P, Wang A D, Liu C T. A ductile high entropy alloy with attractive magnetic properties. J Alloys Compd, 2017, 694: 55 doi: 10.1016/j.jallcom.2016.09.186
    [14] Zuo T T, Gao M C, Ouyang L Z, et al. Tailoring magnetic behavior of CoFeMnNiX (X=Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Mater, 2017, 130: 10 doi: 10.1016/j.actamat.2017.03.013
    [15] Zuo T T, Yang X, Liaw P K, et al. Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy. Intermetallics, 2015, 67: 171 doi: 10.1016/j.intermet.2015.08.014
    [16] Wang J, Zheng Z, Xu J, et al. Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi (Nb) high entropy alloys. J Magn Magn Mater, 2014, 355: 58 doi: 10.1016/j.jmmm.2013.11.049
    [17] Komarov F F, Pogrebnyak A D, Konstantinov S V. Radiation resistance of high-entropy nanostructured (Ti, Hf, Zr, V, Nb)N coatings. Tech Phys, 2015, 60(10): 1519 doi: 10.1134/S1063784215100187
    [18] Nagase T, Rack P D, Noh J H, et al. In-situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM). Intermetallics, 2015, 59: 32 doi: 10.1016/j.intermet.2014.12.007
    [19] Egami T, Ojha M, Khorgolkhuu O, et al. Local electronic effects and irradiation resistance in high-entropy alloys. JOM, 2015, 67(10): 2345 doi: 10.1007/s11837-015-1579-1
    [20] 何春静, 刘雄军, 张盼, 等. 粉末冶金在高熵材料中的应用. 工程科学学报, 2019, 41(12):1501

    He C J, Liu X J, Zhang P, et al. Applications of powder metallurgy technology in high-entropy materials. Chin J Eng, 2019, 41(12): 1501
    [21] 闫薛卉, 张勇. 高熵薄膜和成分梯度材料. 表面技术, 2019, 48(6):98

    Yan X H, Zhang Y. High-entropy films and compositional gradient materials. Surf Technol, 2019, 48(6): 98
    [22] Feng X G, Zhang K F, Zheng Y G, et al. Chemical state, structure and mechanical properties of multi-element (CrTaNbMoV)Nx films by reactive magnetron sputtering. Mater Chem Phys, 2020, 239: 121991 doi: 10.1016/j.matchemphys.2019.121991
    [23] Hsieh T H, Hsu C H, Wu C Y, et al. Effects of deposition parameters on the structure and mechanical properties of high-entropy alloy nitride films. Curr Appl Phys, 2018, 18(5): 512 doi: 10.1016/j.cap.2018.02.015
    [24] von Fieandt K, Paschalidou E M, Srinath A, et al. Multi-component (Al, Cr, Nb, Y, Zr)N thin films by reactive magnetron sputter deposition for increased hardness and corrosion resistance. Thin Solid Films, 2020, 693: 137685 doi: 10.1016/j.tsf.2019.137685
    [25] Xing Q W, Xia S Q, Yan X H, et al. Mechanical properties and thermal stability of (NbTiAlSiZr)Nx high-entropy ceramic films at high temperatures. J Mater Res, 2018, 33(19): 3347 doi: 10.1557/jmr.2018.337
    [26] Chen T K, Shun T T, Yeh J W, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf Coat Technol, 2004, 188-189: 193 doi: 10.1016/j.surfcoat.2004.08.023
    [27] Huang P K, Yeh J W. Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating. Surf Coat Technol, 2009, 203(13): 1891 doi: 10.1016/j.surfcoat.2009.01.016
    [28] Braic V, Vladescu A, Balaceanu M, et al. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings. Surf Coat Technol, 2012, 211: 117 doi: 10.1016/j.surfcoat.2011.09.033
    [29] Guo H X, He C Y, Qiu X L, et al. A novel multilayer high temperature colored solar absorber coating based on high-entropy alloy MoNbHfZrTi: Optimized preparation and chromaticity investigation. Sol Energy Mater Sol Cells, 2020, 209: 110444 doi: 10.1016/j.solmat.2020.110444
    [30] Zhang W R, Liaw P K, Zhang Y. A novel low-activation VCrFeTaxWx (x=0.1, 0.2, 0.3, 0.4, and 1) high-entropy alloys with excellent heat-softening resistance. Entropy, 2018, 20(12): 951 doi: 10.3390/e20120951
    [31] Xing Q W, Ma J, Wang C, et al. High-throughput screening solar-thermal conversion films in a pseudobinary (Cr, Fe, V)−(Ta, W) system. ACS Comb Sci, 2018, 20(11): 602 doi: 10.1021/acscombsci.8b00055
  • 加载中
计量
  • 文章访问数:  378
  • HTML全文浏览量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-28
  • 网络出版日期:  2020-11-13

目录

    /

    返回文章
    返回