• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高疲劳寿命轴承钢洁净度现状及研究进展

顾超 王仲亮 肖微 王敏 刘宇 黄永生 包燕平

顾超, 王仲亮, 肖微, 王敏, 刘宇, 黄永生, 包燕平. 高疲劳寿命轴承钢洁净度现状及研究进展[J]. 工程科学学报, 2021, 43(3): 299-310. doi: 10.13374/j.issn2095-9389.2020.10.09.005
引用本文: 顾超, 王仲亮, 肖微, 王敏, 刘宇, 黄永生, 包燕平. 高疲劳寿命轴承钢洁净度现状及研究进展[J]. 工程科学学报, 2021, 43(3): 299-310. doi: 10.13374/j.issn2095-9389.2020.10.09.005
GU Chao, WANG Zhong-liang, XIAO Wei, WANG Min, LIU Yu, HUANG Yong-sheng, BAO Yan-ping. Research status and progress on cleanliness of high-fatigue-life bearing steels[J]. Chinese Journal of Engineering, 2021, 43(3): 299-310. doi: 10.13374/j.issn2095-9389.2020.10.09.005
Citation: GU Chao, WANG Zhong-liang, XIAO Wei, WANG Min, LIU Yu, HUANG Yong-sheng, BAO Yan-ping. Research status and progress on cleanliness of high-fatigue-life bearing steels[J]. Chinese Journal of Engineering, 2021, 43(3): 299-310. doi: 10.13374/j.issn2095-9389.2020.10.09.005

高疲劳寿命轴承钢洁净度现状及研究进展

doi: 10.13374/j.issn2095-9389.2020.10.09.005
基金项目: 中央高校基本科研业务费资助项目(FRF-TP-20-026A1);中国博士后科学基金资助项目(2020M680348);钢铁冶金新技术国家重点实验室自主课题资助项目(41620004)
详细信息
    通讯作者:

    E-mail:baoyp@ustb.edu.cn

  • 中图分类号: TF762

Research status and progress on cleanliness of high-fatigue-life bearing steels

More Information
  • 摘要: 对比了国内外高疲劳寿命轴承钢主要杂质元素、主要夹杂物特征等冶金性能的差异,并对比了不同冶金质量下,轴承钢的疲劳性能及诱发疲劳断裂的因素,总结了国产轴承钢洁净度现状及与国外优质轴承钢的差距。在此基础上,围绕高疲劳寿命轴承钢,以进一步提高国产轴承钢质量为目的,分析梳理了国产轴承钢冶炼技术及夹杂物控制方法的发展轨迹,探讨了国产轴承钢进一步提高疲劳寿命及质量的发展方向。
  • 图  1  轴承使用性能主要影响因素

    Figure  1.  Main influence factor on the service character of bearings

    图  2  不同种类夹杂物在轴承钢中最大裂尖应力强度因子(SIF)对比

    Figure  2.  Comparison of maximum stress intensity factors (SIF) of different inclusions in bearing steels

    图  3  国内外轴承钢主要杂质元素对比。(a)Ca;(b)Ti;(c)T.O;(d)N

    Figure  3.  Composition of main impurity elements in domestic and foreign bearing steels: (a) Ca; (b) Ti; (c) T.O; (d) N

    图  4  国内外轴承钢主要夹杂物对比。(a)尖晶石类夹杂物个数密度;(b)钙铝酸盐类夹杂物个数密度;(c)硅酸盐类夹杂物个数密度;(d)尖晶石类夹杂物尺寸分布;(e)钙铝酸盐类夹杂物尺寸分布;(f)硅酸盐类夹杂物尺寸分布;(g)氮化钛类夹杂物个数密度;(h)硫化锰类夹杂物个数密度;(i)氮化钛类夹杂物尺寸分布;(j)硫化锰类夹杂物尺寸分布

    Figure  4.  Composition of main inclusion in domestic and foreign bearing steels: (a) number density of spinel inclusion; (b) size distribution of spinel inclusion; (c) number density of calcium aluminate inclusion; (d) size distribution of calcium aluminate inclusion; (e) number density of silicate inclusion; (f) size distribution of silicate inclusion; (g) number density of titanium nitride inclusion; (h) size distribution of titanium nitride inclusion; (i) number density of manganese sulfide inclusion; (j) size distribution of manganese sulfide inclusion

    图  5  国内外轴承钢典型疲劳特征。(a)疲劳寿命对比[3];(b)钙铝酸盐类夹杂物致疲劳断口形貌(轴承钢B)[3];(c)尖晶石类类夹杂物致疲劳断口形貌(轴承钢C)[12];(d)氮化钛类类夹杂物致疲劳断口形貌(轴承钢D)[12]

    Figure  5.  Typical fatigue characterization of domestic and foreign bearing steels: (a) comparison of fatigue life[3]; (b) morphology of fatigue fracture induced by calcium aluminate inclusion (bearing steel B)[3]; (c) morphology of fatigue fracture induced by spinel inclusion (bearing steel C)[12]; (d) morphology of fatigue fracture induced by titanium nitride inclusion (bearing steel D)[12]

    图  6  国内钢材冶炼脱氧技术发展

    Figure  6.  Development of deoxidation methods of domestic steels

    图  7  水口结瘤物形貌及成分[27]。(a)内层结瘤物;(b)中间层结瘤物;(c)中间层结瘤物成分

    Figure  7.  Morphologies and composition of nuzzle clogging[27]: (a) inner clogging; (b) intermediate-layer clogging; (c) composition of intermediate-layer clogging

    图  8  铝脱氧钢中夹杂物的变形路径

    Figure  8.  Deformation path of inclusions in Al deoxidation steel

    图  9  非铝脱氧钢(S)和铝脱氧钢(A)中夹杂物对比[46].(a)尺寸;(b)密度

    Figure  9.  Comparison of inclusions in non-Al deoxidation steel (S) and Al deoxidation steel (L): (a) size; (b) number density

    表  1  GB/T 18254—2016高碳铬轴承钢中残余元素含量要求(质量分数)

    Table  1.   Requirements of residual elements in high carbon chromium bearing steel in GB/T 18254—2016 %

    Metallurgical qualityNiCuPSCaOaTibAlAsAs+Sn+SbPb
    High-quality steel≤0.25≤0.25≤0.025≤0.020≤0.0012≤0.0050≤0.050≤0.04≤0.075≤0.002
    Advanced high-quality steel≤0.25≤0.25≤0.020≤0.020≤0.0010≤0.0009≤0.0030≤0.050≤0.04≤0.075≤0.002
    Super high-quality steel≤0.25≤0.25≤0.015≤0.015≤0.0010≤0.0006≤0.0015≤0.050≤0.04≤0.075≤0.002
    Note: a The oxygen content is tested in billets or rolled steels; b The composition in steel grade GCr15SiMn, GCr15SiMo, and GCr18Mo is allowed 0.0005% addition.
    下载: 导出CSV

    表  2  Al‒O平衡常数计算值和实验值对比

    Table  2.   Comparison of calculation results and experimental data of Al‒O equilibrium constant

    Thermodynamic calculationExperiments without oxygenExperiments with oxygen
    Researchers-lg Kd Researchers-lg Kd Researchers-lg Kd
    Chipman14Chipman14Hessenbruch9
    Kubaschewski15Gller13Herty9
    Richardson13Kuznetchov12Wentrup10
    Sawamura14Eutrement13Hilty9
    Elliott14Fruehan14Repetylo9
    下载: 导出CSV
  • [1] 李昭昆, 雷建中, 徐海峰, 等. 国内外轴承钢的现状与发展趋势. 钢铁研究学报, 2016, 28(3):1

    Li Z K, Lei J Z, Xu H F, et al. Current status and development trend of bearing steel in China and abroad. J Iron Steel Res, 2016, 28(3): 1
    [2] 任秀平: 我国特殊钢现状及发展方向. 世界金属导报, 2016-10-18: B14

    Ren X. Current situation and development direction of special steel in China. World Metal Guide, 2016-10-18: B14
    [3] Gu C, Bao Y P, Gan P, et al. Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime. Int J Miner Metall Mater, 2018, 25(6): 623 doi: 10.1007/s12613-018-1609-4
    [4] Qian G A, Hong Y S, Zhou C G. Investigation of high cycle and very-high-cycle fatigue behaviors for a structural steel with smooth and notched specimens. Eng Fail Anal, 2010, 17(7-8): 1517 doi: 10.1016/j.engfailanal.2010.06.002
    [5] Gao G H, Zhang B X, Cheng C, et al. Very high cycle fatigue behaviors of bainite/martensite multiphase steel treated by quenching-partitioning tempering process. Int J Fatigue, 2016, 92: 203 doi: 10.1016/j.ijfatigue.2016.06.025
    [6] 李守新, 翁宇庆, 惠卫军, 等. 高强度钢超高周疲劳性能: 非金属夹杂物的影响. 北京: 冶金工业出版社, 2010

    Li S X, Weng Y Q, Hui W J, et al. Very High Cycle Fatigue Properties of High Strength Steels-Effects of Nonmetallic Inclusions. Beijing: Metallurgical Industry Press, 2010
    [7] Spriestersbach D, Grad P, Kerscher E. Influence of different non-metallic inclusion types on the crack initiation in high-strength steels in the VHCF regime. Int J Fatigue, 2014, 64: 114 doi: 10.1016/j.ijfatigue.2014.03.003
    [8] Karr U, Schuller R, Fitzka M, et al. Influence of inclusion type on the very high cycle fatigue properties of 18Ni maraging steel. J Mater Sci, 2017, 52(10): 5954 doi: 10.1007/s10853-017-0831-1
    [9] Gu C, Wang M, Bao Y P, et al. Quantitative analysis of inclusion engineering on the fatigue property improvement of bearing steel. Metals, 2019, 9(4): 476 doi: 10.3390/met9040476
    [10] Murakami Y, Kodama S, Konuma S. Quantitative evaluation of effects of nonmetallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture and the size and location of non-metallic inclusions. Int J Fatigue, 1989, 11(5): 291
    [11] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 18254—2016 高碳铬轴承钢. 北京: 中国标准出版社, 2016

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration. GB/T 18254—2016 High Carbon Chromium Bearing Steel. Beijing: Standard Press of China, 2016
    [12] 顾超. 高品质轴承钢疲劳寿命预测模型及夹杂物影响规律研究[学位论文]. 北京: 北京科技大学, 2019

    Gu C. Microstructure Fatigue Life Prediction Model Based on the Effect of Inclusions in Bearing Steel [Dissertation]. Beijing: University of Science and Technology Beijing, 2019
    [13] 徐鹿鸣, 王春生, 王德华. 炼钢的脱氧和复合合金的应用. 铁合金, 2004, 35(5):12 doi: 10.3969/j.issn.1001-1943.2004.05.003

    Xu L M, Wang C S, Wang D H. Deoxidation of steel making and application of complex ferroalloy. Ferro-Alloys, 2004, 35(5): 12 doi: 10.3969/j.issn.1001-1943.2004.05.003
    [14] Shirokov N I, Petukhov B G. Deoxidation of rail steel by a reduced quantity of aluminum. Metallurgist, 1958, 2(1): 22 doi: 10.1007/BF00734438
    [15] 余宗森. 连铸中间包及盛钢桶水口结瘤堵塞问题. 鞍钢技术, 1980(5):8

    Yu Z S. Noduling and blockage at nozzle of continuous casting tundish and ladle. Angang Technol, 1980(5): 8
    [16] Ofengenden A M, Nesterovich R P. Reducing the amount of aluminum for the deoxidation of steel. Metallurgist, 1958, 2(6): 286 doi: 10.1007/BF00736270
    [17] 卢盛意. 用硅代替铝脱氧来消除连铸水口堵塞. 炼钢, 2004, 20(6):32 doi: 10.3969/j.issn.1002-1043.2004.06.011

    Lu S Y. Elimination of nozzle clogging by substitution Si for Al as deoxidant. Steelmaking, 2004, 20(6): 32 doi: 10.3969/j.issn.1002-1043.2004.06.011
    [18] Cai X F, Bao Y P, Lin L, et al. Effect of Al content on the evolution of non-metallic inclusions in Si–Mn deoxidized steel. Steel Res Int, 2016, 87(9): 1168 doi: 10.1002/srin.201500305
    [19] Lyu S, Ma X D, Huang Z Z, et al. Understanding the formation and evolution of oxide inclusions in Si-deoxidized spring steel. Metall Mater Trans B, 2019, 50(4): 1862 doi: 10.1007/s11663-019-01613-0
    [20] 李璟宇, 成国光, 李六一, 等. 202不锈钢中非金属夹杂物的形成机理. 工程科学学报, 2019, 41(12):1567

    Li J Y, Cheng G G, Li L Y, et al. Formation mechanism of non-metallic inclusions in 202 stainless steel. Chin J Eng, 2019, 41(12): 1567
    [21] Li Y, Chen C Y, Qin G Q, et al. Influence of crucible material on inclusions in 95Cr saw-wire steel deoxidized by Si–Mn. Int J Miner Metall Mater, 2020, 27(8): 1083 doi: 10.1007/s12613-019-1957-8
    [22] 徐金城, A. R. 帕莫. 铝脱氧钢液中氧化物夹杂的形态和成分. 甘肃工业大学学报, 1987, 13(1):55

    Xu J C, Palmer A R. Studies on morphology and compositions of oxide inclusions formed in liquid steel after deoxidation with aluminum. J Lanzhou Univ Technol, 1987, 13(1): 55
    [23] 史宗耀, 王树林. 铝脱氧和硅铝铁脱氧分析. 炼钢, 1991(1):22

    Shi Z Y, Wang S L. Analysis of aluminum deoxidation and silicon-aluminum-iron deoxidation. Steelmaking, 1991(1): 22
    [24] 张文禄. 钢用铝脱氧的“一段空白”. 包钢科技, 1980(1):58

    Zhang W L. "A Blank" in aluminum deoxidization for steel. Sci Technol Baotou Steel, 1980(1): 58
    [25] 李会玲, 张哲平, 汪凤华. Al在钢中脱氧定氮作用浅析. 天津冶金, 2008(05):51 doi: 10.3969/j.issn.1006-110X.2008.05.013

    Li H L, Zhang Z P, Wang F H. Brief talk on aluminum deoxidation and nitrogen determination function in liquid steel. Tianjin Metall, 2008(05): 51 doi: 10.3969/j.issn.1006-110X.2008.05.013
    [26] 张复祥. 铝对非合金软钢性能的影响. 钢铁研究情报, 1974(4):44

    Zhang F X. Effect of aluminum on performance of non-alloy soft steel. Res Iron Steel, 1974(4): 44
    [27] Cui H, Bao Y P, Wang M, et al. Clogging behavior of submerged entry nozzles for Ti-bearing IF steel. Int J Miner Metall Mater, 2010, 17(2): 154 doi: 10.1007/s12613-010-0206-y
    [28] 华承健, 王敏, 张孟昀, 等. 浸入式水口内壁特征对边界层流场结构和氧化铝夹杂物运动行为的影响. 工程科学学报, https://doi.org/10.13374/j.issn2095-9389.2020.05.05.001

    Hua C J, Wang M, Zhang M Y, et al., Effect of submerged entry nozzle wall surface morphologies on boundary layer structure and alumina inclusions transport. Chin J Eng, https://doi.org/10.13374/j.issn2095-9389.2020.05.05.001
    [29] 王新华, 王立峰. 硬线钢中非金属夹杂物控制. 金属制品, 2005, 31(5):9

    Wang X H, Wang L F. Control of the non-metallic inclusions in hard wire steels. Steel Wire Products, 2005, 31(5): 9
    [30] Gladman T. Developments in inclusions control and their effects on steel properties. Ironmaking Steelmaking, 1992, 19(6): 457
    [31] 朱丽慧, 赵钦新, 顾海澄, 等. 关于钢用铝脱氧的再认识. 钢铁研究学报, 1999, 11(4):65 doi: 10.3321/j.issn:1001-0963.1999.04.016

    Zhu L H, Zhao Q X, Gu H C, et al. A new understanding of deoxidation by aluminum in steels. J Iron Steel Res, 1999, 11(4): 65 doi: 10.3321/j.issn:1001-0963.1999.04.016
    [32] Gu C, Lian J H, Bao Y P, et al. Microstructure-based fatigue modelling with residual stresses: Prediction of the microcrack initiation around inclusions. Mater Sci Eng A, 2019, 751: 133 doi: 10.1016/j.msea.2019.02.058
    [33] Gu C, Lian J H, Bao Y P, et al. Microstructure-based fatigue modelling with residual stresses: Prediction of the fatigue life for various inclusion sizes. Int J Fatigue, 2019, 129: 105158 doi: 10.1016/j.ijfatigue.2019.06.018
    [34] 包萨日娜, 陈斌, 姜敏, 等. 超低氧钢中同时降低[Al]s、[O]实验研究. 钢铁, 2007, 42(6):30 doi: 10.3321/j.issn:0449-749X.2007.06.007

    Bao S, Chen B, Jiang M, et al. Experimental research of simultaneous reducing [Al]s and [O] of ultra low oxygen steel. Iron Steel, 2007, 42(6): 30 doi: 10.3321/j.issn:0449-749X.2007.06.007
    [35] 李海波, 林伟, 王新华, 等. 铝脱氧钢中尖晶石夹杂物的生成与转变. 特殊钢, 2007, 28(4):30 doi: 10.3969/j.issn.1003-8620.2007.04.011

    Li H B, Lin W, Wang X H, et al. Formation and transformation of spinel inclusion in aluminium killed steel. Special Steel, 2007, 28(4): 30 doi: 10.3969/j.issn.1003-8620.2007.04.011
    [36] 胡文豪, 包燕平, 金耀辉. GCr15板带轴承钢中的Als研究与实践. 炼钢, 2009, 25(2):22

    Hu W H, Bao Y P, Jin Y H. Study and control practice of Als in GCr15 bearing steel strip. Steelmaking, 2009, 25(2): 22
    [37] 王新华. 超低氧含量特殊钢的脱氧、精炼与非金属夹杂物控制 // 2010年全国炼钢—连铸生产技术会议. 迁安, 2010

    Wang X H. Technologies of deoxidation, refining and non-metallic inclusion control for special steels // Proceedings of 2010 National Steelmaking Continuous Casting Technology Conference. Qian’an, 2010
    [38] 赵东伟, 李海波, 高攀, 等. 非钙处理铝脱氧车轮钢夹杂物形成及变形行为. 钢铁, 2016, 51(1):25

    Zhao D W, Li H B, Gao P, et al. Inclusion formation and deformation in Al-killed wheel steel without calcium treatment. Iron Steel, 2016, 51(1): 25
    [39] 陈斌, 包萨日娜, 姜敏, 等. 镁提高钢水纯净度的研究. 钢铁研究学报, 2008, 20(6):14

    Chen B, Bao S, Jiang M, et al. Cleanliness of molten steel improved by Mg. J Iron Steel Res, 2008, 20(6): 14
    [40] Deng Z Y, Zhu M Y. Evolution mechanism of non-metallic inclusions in Al-killed alloyed steel during secondary refining process. ISIJ Int, 2013, 53(3): 450 doi: 10.2355/isijinternational.53.450
    [41] Deng Z Y, Zhu M Y. Deoxidation mechanism of Al-killed steel during industrial refining process. ISIJ Int, 2014, 54(7): 1498
    [42] 翟学来, 何镇明, 刘耀辉, 等. 钙铝脱氧对奥氏体锰钢非金属夹杂物形成的热力学分析. 钢铁, 1986(6):42

    Zhai X L, He Z M, Liu Y H, et al. Thermodynamic analysis on the non-metallic inclusion formation in deoxidation of austenitic Mn-steels with Ca-Al. Iron Steel, 1986(6): 42
    [43] 乔梦然, 郭曙强, 郑红妍, 等. GCr18Mo轴承钢的镁处理改质效果研究. 上海金属, 2019, 41(2):86 doi: 10.3969/j.issn.1001-7208.2019.02.016

    Qiao M R, Guo S Q, Zheng H Y, et al. Study on the modification of inclusions by Mg treatment in GCr18Mo bearing steel. Shanghai Met, 2019, 41(2): 86 doi: 10.3969/j.issn.1001-7208.2019.02.016
    [44] Yang C Y, Liu P, Luan L K, et al. Study on transverse-longitudinal fatigue properties and their effective inclusion-size mechanism of hot rolled bearing steel with rare earth addition. Int J Fatigue, 2019, 128: 105193 doi: 10.1016/j.ijfatigue.2019.105193
    [45] 常立忠, 高岗, 郑福舟, 等. 稀土‒镁复合处理对GCr15轴承钢中夹杂物的影响. 工程科学学报, 2019, 41(6):763

    Chang L Z, Gao G, Zheng F Z, et al. Effect of rare earth and magnesium complex treatment on inclusions in GCr15 bearing steel. Chin J Eng, 2019, 41(6): 763
    [46] Gu C, Bao Y P, Gan P, et al. An experimental study on the impact of deoxidation methods on the fatigue properties of bearing steels. Steel Res Int, 2018, 89(9): 1800129 doi: 10.1002/srin.201800129
    [47] Ladutkin D, Korte E, Bleymehl M, et al. Advantages of Si deoxidation of bearing steels for steel cleanness and for composition and morphology of nonmetallic inclusions in rolled product // Bearing Steel Technologies: 11th Volume, Progress in Steel Technologies and Bearing Steel Quality Assurance. West Conshohocken, 2017: 48
    [48] Shimamoto M, Sugimura T, Kimura S, et al. Improvement of the rolling contact fatigue resistance in bearing steels by adjusting the composition of oxide inclusions // Bearing Steel Technologies: 10th Volume, Advances in Steel Technologies for Rolling Bearings. West Conshohocken, 2015: 173
    [49] Owaki A, Shimamoto M, Sugimura T, et al. The study of the evaluation of the fracture initiation and propagation on the rolling contact fatigue in bearing steels // Bearing Steel Technologies: 11th Volume, Progress in Steel Technologies and Bearing Steel Quality Assurance. West Conshohocken, 2017: 487
    [50] 薛正良, 李正邦, 张家雯. 钢的脱氧与氧化物夹杂控制. 特殊钢, 2001, 22(6):24 doi: 10.3969/j.issn.1003-8620.2001.06.008

    Xue Z L, Li Z B, Zhang J W. Deoxidization and oxide inclusion control of steel. Special Steel, 2001, 22(6): 24 doi: 10.3969/j.issn.1003-8620.2001.06.008
    [51] 吴伟, 刘浏, 李峻. 重轨钢无铝脱氧工艺的研究. 钢铁, 2007, 42(3):33 doi: 10.3321/j.issn:0449-749X.2007.03.009

    Wu W, Liu L, Li J. Deoxidization process with low aluminum addition for heavy rail steel. Iron Steel, 2007, 42(3): 33 doi: 10.3321/j.issn:0449-749X.2007.03.009
    [52] 李阳, 姜周华, 袁伟霞, 等. 精炼渣对非铝脱氧钢中夹杂物影响的实验研究. 中国冶金, 2006, 16(6):28 doi: 10.3969/j.issn.1006-9356.2006.06.008

    Li Y, Jiang Z H, Yuan W X, et al. Effect of refining slag on inclusions in non-aluminum deoxidation steel. China Metall, 2006, 16(6): 28 doi: 10.3969/j.issn.1006-9356.2006.06.008
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  635
  • HTML全文浏览量:  324
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-09
  • 刊出日期:  2021-03-19

目录

    /

    返回文章
    返回