• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三元锂离子动力电池热失控及蔓延特性实验研究

王淮斌 李阳 王钦正 杜志明 冯旭宁

王淮斌, 李阳, 王钦正, 杜志明, 冯旭宁. 三元锂离子动力电池热失控及蔓延特性实验研究[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.10.27.002
引用本文: 王淮斌, 李阳, 王钦正, 杜志明, 冯旭宁. 三元锂离子动力电池热失控及蔓延特性实验研究[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.10.27.002
WANG Huai-bin, LI Yang, WANG Qin-zheng, DU Zhi-ming, FENG Xu-ning. Experimental study on the thermal runaway and its propagation of a lithium-ion traction battery with NCM cathode under thermal abuse[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.10.27.002
Citation: WANG Huai-bin, LI Yang, WANG Qin-zheng, DU Zhi-ming, FENG Xu-ning. Experimental study on the thermal runaway and its propagation of a lithium-ion traction battery with NCM cathode under thermal abuse[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.10.27.002

三元锂离子动力电池热失控及蔓延特性实验研究

doi: 10.13374/j.issn2095-9389.2020.10.27.002
基金项目: 科技部国际合作资助项目(2019YFE0100200);国家自然科学基金资助项目(51706117, 52076121);2019年度警察大学实验创新平台专项课题资助项目(2019sycxpd001)
详细信息
    通讯作者:

    E-mail: fxn17@mail.tsinghua.edu.cn

  • 中图分类号: X913.4; TM911.3

Experimental study on the thermal runaway and its propagation of a lithium-ion traction battery with NCM cathode under thermal abuse

More Information
  • 摘要: 以电动汽车车用额定容量为42 A·h的三元方壳锂离子电池单体和模组为研究对象,研究其在加热条件下单体的绝热热失控特性及成组后侧向加热热失控蔓延特性。结果表明,锂离子电池在发生热失控时,内部最高温度可达920 ℃,电池表面和内部最大温差达403 ℃;热失控首先在迎向热流的面触发,随后蔓延至整个电池;满电状态下的锂离子电池内部热失控蔓延时间介于8~12 s;热失控蔓延过程中锂离子电池的温度特征与绝热热失控测试相比存在较大差异性;热失控喷发颗粒物中,LiF及石墨质量分数占80%以上;模组中失控电池产生的总能量中用于自身加热和喷发损失的占90%左右,热失控释放总能量的10%足以触发热失控蔓延。本文为研究三元锂离子电池模组安全设计、热失控蔓延抑制及新能源汽车的火灾事故调查提供了参考。
  • 图  1  内置热电偶方案及其对电池性能的影响。(a)步骤;(b)开路电压测量结果;(c)内阻测量结果

    Figure  1.  The built-in strategy of thermocouples and its influence on the performance of battery sample: (a) insertion steps; (b) open-circuit-voltage; (c) internal resistance

    图  2  使用EV-ARC进行了锂电池的绝热热失控测试

    Figure  2.  Experimental setup for the adiabatic thermal runaway tests of lithium-ion batteries using EV-ARC

    图  3  热失控蔓延实验设计

    Figure  3.  Experimental setup for the thermal runaway propagation lithium-ion battery module

    图  4  电池绝热热失控测试过程中的温度、电压特征图

    Figure  4.  Voltage, temperature, and temperature rate of lithium-ion battery during the EV-ARC test

    图  5  热失控过程不同温度阶段内部反应

    Figure  5.  Chemical reactions inside the lithium-ion battery at different temperature ranges

    图  6  电池热失控过程的内部和表面温度

    Figure  6.  Internal and surface temperatures of lithium-ion battery during thermal runaway in EV-ARC test

    图  7  电池热失控前后材料化学分析。(a)未失控正极扫描电镜照片;(b)失控后正极残骸扫描电镜照片;(c)喷发颗粒物扫描电镜照片;(d)未失控、失控后、喷发颗粒能谱结果;(e) 喷发颗粒物及失控后正极X射线衍射图

    Figure  7.  Chemical analysis of the lithium-ion battery before and after thermal runaway: (a) SEM of cathode materials before thermal runaway; (b) SEM of residual cathode after thermal runaway; (c) SEM of vent particles; (d) EDS of element analysis on the cathode before and after thermal runaway ;(e) XRD of vent particles and cathode materials after thermal runaway

    图  8  ln(dT/dt)和T-1拟合曲线

    Figure  8.  ln(dT/dt) versus T-1 for lithium-ion battery

    图  9  热失控蔓延中电池的喷发特征。(1a)1#电池,0 s;(1b)1#电池,154 s;(1c)1#电池,161 s;(1d)1#电池,0 s;(1e)1#电池,154 s;(1f)1#电池,161 s;(2a)2#电池,212 s;(2b) 2#电池,218 s;(3a)3#电池,274 s;(3b)2#电池,280 s;(4a)4#电池,380 s;(4b)4#电池,393 s

    Figure  9.  Vent characteristics in thermal runaway propagation: (1a)1# Cell,0 s;(1b) 1# Cell,154 s;(1c) 1# Cell,161 s;(1d)1# Cell,0 s;(1e) 1# Cell,154 s;(1f) 1# Cell,161 s;(2a)2# Cell,212 s;(2b) 2# Cell,218 s;(3a)3# Cell,274 s;(3b) 2# Cell,280 s;(4a)4# Cell,380 s;(4b) 4# Cell,393 s

    图  10  热失控蔓延过程中温度特征

    Figure  10.  Temperature characteristics in thermal runaway propagation

    图  11  三元锂电池的热失控蔓延特性

    Figure  11.  Characteristics of thermal runaway propagation for Li(NiCOMn)1/3O2 battery

    图  12  热失控响应及质量损失

    Figure  12.  Thermal runaway response and mass loss in thermal runaway propagation

    图  13  热失控蔓延过程中温度、电压的响应

    Figure  13.  Temperature and voltage responses during thermal runaway propagation test

    图  14  绝热热失控与侧向加热热失控过程中电池内部温升速率的对比

    Figure  14.  Comparison of the temperature rise rate between EV-ARC test and side heating during thermal runaway propagation

    图  15  电池之间传热热阻分布情况[35]

    Figure  15.  Distribution of thermal resistance between cells

    图  16  热失控蔓延至不同阶段时相邻电池内放的温度分布情况[36]. (a)i#电池失控达到最高温度; (b)i#电池加热(i+1)#电池; (c)(i+1)#电池达到热失控触发温度TTR-ARC; (d)(i+1)#电池失控达到最高温度

    Figure  16.  Temperature distribution of adjacent batteries in different stages of thermal runaway propagation: (a)the maximum temperature of i# in TR; (b)i# heats(i+1)#; (c)the temperature of(i+1)#reachs to TTR-ARC; (d)the temperature of(i+1)#reachs to Tmax

    图  17  热失控蔓延过程中相邻电池能流分布

    Figure  17.  Energy flow distribution of adjacent batteries during thermal runaway propagation

  • [1] 国务院办公厅. 新能源汽车产业发展规划(2021—2035年)[EB/OL]. 中国政府网 (2020-11-02) [2020-10-20]. http://www.gov.cn/zhengce/content/2020-11/02/content_5556716.htm

    General Office of the State Council of the People’s Republic of China. Development Plan of New Energy Automobile Industry (2021—2035)[EB/OL]. www.gov.cn (2020-11-02)[2020-10-20]. http://www.gov.cn/zhengce/content/2020-11/02/content_5556716.htm
    [2] Mao B B, Huang P F, Chen H D, et al. Self-heating reaction and thermal runaway criticality of the lithiumion battery. Int J Heat Mass Transfer, 2020, 149: 119178 doi: 10.1016/j.ijheatmasstransfer.2019.119178
    [3] 王爽, 杜志明, 张泽林, 等. 锂离子电池安全性研究进展. 工程科学学报, 2018, 40(8):901

    Wang S, Du Z M, Zhang Z L, et al. Research progress on safety of lithium-ion batteries. Chin J Eng, 2018, 40(8): 901
    [4] Fergus J W. Recent developments in cathode materials for lithium ion batteries. J Power Sources, 2010, 195(4): 939 doi: 10.1016/j.jpowsour.2009.08.089
    [5] 孙艳霞, 周园, 申月, 等. 动力型锂离子电池富锂三元正极材料研究进展. 化学通报, 2017, 80(1):34

    Sun Y X, Zhou Y, Shen Y, et al. Lithium rich ternary cathode materials for dynamical type lithium ion battery. Chemistry, 2017, 80(1): 34
    [6] 王亚平, 胡淑婉, 曹峰. 锂离子电池正极材料研究进展. 电源技术, 2017, 41(4):638 doi: 10.3969/j.issn.1002-087X.2017.04.043

    Wang Y P, Hu S W, Cao F. Research prospect of cathode materials for lithium ion battery. Power Technol, 2017, 41(4): 638 doi: 10.3969/j.issn.1002-087X.2017.04.043
    [7] Feng X N, Zheng S Q, Ren D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database. Appl Energy, 2019, 246: 53 doi: 10.1016/j.apenergy.2019.04.009
    [8] Feng X N, Ouyang M G, Liu X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater, 2018, 10: 246
    [9] Huang P F, Ping P, Li K, et al. Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode. Appl Energy, 2016, 183: 659 doi: 10.1016/j.apenergy.2016.08.160
    [10] Börger A, Mertens J, Wenzl H. Thermal runaway and thermal runaway propagation in batteries: What do we talk about? J Energy Storage, 2019, 24: 100649 doi: 10.1016/j.est.2019.01.012
    [11] Lopez C F, Jeevarajan J A, Mukherjee P P. Experimental analysis of thermal runaway and propagation in lithium-ion battery modules. J Electrochem Soc, 2015, 162(9): A1905 doi: 10.1149/2.0921509jes
    [12] Gao S, Lu L G, Ouyang M G, et al. Experimental study on module-to-module thermal runaway-propagation in a battery pack. J Electrochem Soc, 2019, 166(10): A2065
    [13] Jiang Z Y, Qu Z G, Zhang J F, et al. Rapid prediction method for thermal runaway propagation in battery pack based on lumped thermal resistance network and electric circuit analogy. Appl Energy, 2020, 268: 115007 doi: 10.1016/j.apenergy.2020.115007
    [14] Feng X N, Fang M, He X M, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J Power Sources, 2014, 255: 294
    [15] Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells. J Power Sources, 2003, 113(1): 81 doi: 10.1016/S0378-7753(02)00488-3
    [16] Richard M N, Dahn J R. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. I. Experimental. J Electrochem Soc, 1999, 146(6): 2068 doi: 10.1149/1.1391893
    [17] Venugopal G. Characterization of thermal cut-off mechanisms in prismatic lithium-ion batteries. J Power Sources, 2001, 101(2): 231 doi: 10.1016/S0378-7753(01)00782-0
    [18] Wang H Y, Tang A D, Huang K L. Oxygen evolution in overcharged LixNi1/3Co1/3Mn1/3O2 electrode and its thermal analysis kinetics. Chin J Chem, 2011, 29(8): 1583
    [19] Zhang Y J, Wang H W, Li W F, et al. Quantitative identification of emissions from abused prismatic Ni-rich lithium-ion batteries. eTransportation, 2019, 2: 100031 doi: 10.1016/j.etran.2019.100031
    [20] Larsson F, Bertilsson S, Furlani M, et al. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing. J Power Sources, 2018, 373: 220 doi: 10.1016/j.jpowsour.2017.10.085
    [21] Peng Y, Yang L Z, Ju X Y, et al. A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode. J Hazard Mater, 2020, 381: 120916
    [22] Li H, Duan Q L, Zhao C P, et al. Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni1/3Co1/3Mn1/3)O2 as cathode. J Hazard Mater, 2019, 375: 241 doi: 10.1016/j.jhazmat.2019.03.116
    [23] Wang H B, Du Z M, Rui X Y, et al. A comparative analysis on thermal runaway behavior of Li (NixCoyMnz) O2 battery with different nickel contents at cell and module level. J Hazard Mater, 2020, 393: 122361 doi: 10.1016/j.jhazmat.2020.122361
    [24] Wilke S, Schweitzer B, Khateeb S, et al. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study. J Power Sources, 2017, 340: 51 doi: 10.1016/j.jpowsour.2016.11.018
    [25] Yuan C C, Wang Q S, Wang Y, et al. Inhibition effect of different interstitial materials on thermal runaway propagation in the cylindrical lithium-ion battery module. Appl Therm Eng, 2019, 153: 39 doi: 10.1016/j.applthermaleng.2019.02.127
    [26] Tao C F, Li G Y, Zhao J B, et al. The investigation of thermal runaway propagation of lithium-ion batteries under different vertical distances. J Therm Anal Calorim, 2020, 142(4): 1523 doi: 10.1007/s10973-020-09274-x
    [27] Wang Z, Wang J. Investigation of external heating-induced failure propagation behaviors in large-size cell modules with different phase change materials. Energy, 2020, 204: 117946
    [28] Niu H C, Chen C X, Ji D, et al. Thermal-runaway propagation over a linear cylindrical battery module. Fire Technol, 2020, 56(6): 2491 doi: 10.1007/s10694-020-00976-0
    [29] Wang H B, Du Z M, Liu L, et al. Study on the thermal runaway and its propagation of lithium-ion batteries under low pressure. Fire Technol, 2020, 56(6): 2427 doi: 10.1007/s10694-020-00963-5
    [30] Huang Z H, Zhao C P, Li H, et al. Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes. Energy, 2020, 205: 117906 doi: 10.1016/j.energy.2020.117906
    [31] 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[学位论文]. 北京: 清华大学, 2016

    Feng X N. Thermal Runaway Initiation and Propagation of Lithium-Ion Traction Battery for Electric Vehicle: test, Modeling and Prevention [Dissertation]. Beijing: Tsinghua University, 2016
    [32] Mao B B, Chen H D, Cui Z X, et al. Failure mechanism of the lithium ion battery during nail penetration. Int J Heat Mass Transfer, 2018, 122: 1103 doi: 10.1016/j.ijheatmasstransfer.2018.02.036
    [33] Feng X N, Ren D S, He X M, et al. Mitigating thermal runaway of lithium-ion batteries. Joule, 2020, 4(4): 743
    [34] Wang Q S, Mao B B, Stoliarov S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog Energy Combust Sci, 2019, 73: 95 doi: 10.1016/j.pecs.2019.03.002
    [35] Liu X, Ren D S, Hsu H, et al. Thermal runaway of lithium-ion batteries without internal short circuit. Joule, 2018, 2(10): 2047 doi: 10.1016/j.joule.2018.06.015
    [36] Feng X N, Sun J, Ouyang M G, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. J Power Sources, 2015, 275: 261 doi: 10.1016/j.jpowsour.2014.11.017
  • 加载中
计量
  • 文章访问数:  298
  • HTML全文浏览量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-27
  • 网络出版日期:  2021-01-08

目录

    /

    返回文章
    返回