• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人驾驶车辆路径跟踪控制研究现状

白国星 孟宇 刘立 顾青 王国栋 周碧宁

白国星, 孟宇, 刘立, 顾青, 王国栋, 周碧宁. 无人驾驶车辆路径跟踪控制研究现状[J]. 工程科学学报, 2021, 43(4): 475-485. doi: 10.13374/j.issn2095-9389.2020.11.12.003
引用本文: 白国星, 孟宇, 刘立, 顾青, 王国栋, 周碧宁. 无人驾驶车辆路径跟踪控制研究现状[J]. 工程科学学报, 2021, 43(4): 475-485. doi: 10.13374/j.issn2095-9389.2020.11.12.003
BAI Guo-xing, MENG Yu, LIU Li, GU Qing, WANG Guo-dong, ZHOU Bi-ning. Current status of path tracking control of unmanned driving vehicles[J]. Chinese Journal of Engineering, 2021, 43(4): 475-485. doi: 10.13374/j.issn2095-9389.2020.11.12.003
Citation: BAI Guo-xing, MENG Yu, LIU Li, GU Qing, WANG Guo-dong, ZHOU Bi-ning. Current status of path tracking control of unmanned driving vehicles[J]. Chinese Journal of Engineering, 2021, 43(4): 475-485. doi: 10.13374/j.issn2095-9389.2020.11.12.003

无人驾驶车辆路径跟踪控制研究现状

doi: 10.13374/j.issn2095-9389.2020.11.12.003
基金项目: 国家重点研发计划资助项目(2018YFE0192900,2018YFC0604403,2018YFC0810500,2019YFC0605300);广东省基础与应用基础研究基金资助项目(2019A1515111015);中央高校基本科研业务费专项资金资助项目(FRF-TP-20-052A1)
详细信息
    通讯作者:

    E-mail:myu@ustb.edu.cn

  • 中图分类号: U471.15

Current status of path tracking control of unmanned driving vehicles

More Information
  • 摘要: 近年来路径跟踪控制的发展十分迅猛,研究者们发表了大量的研究成果。考虑到在相同或相近工况下的路径跟踪控制存在一些共性的技术问题与解决思路,从低速路径跟踪控制和高速路径跟踪控制两个角度对近年来的研究成果进行了回顾。在关于低速路径跟踪控制的研究工作中,研究者们较为重视前轮转角速度约束等系统约束对路径跟踪精确性的影响。目前减少系统约束影响的方法包括在规划参考路径时将系统约束纳入考虑,采用预瞄控制使控制器提前响应,以及采用线性模型预测控制(LMPC)或非线性模型预测控制(NMPC)等模型预测控制方法作为路径跟踪控制方法等。考虑到NMPC既能减少系统约束的影响,又无需人为设置预瞄距离,且对定位误差等扰动因素具有较强的鲁棒性,加之低速路径跟踪控制对实时性的需求较低,因此可以认为NMPC能够满足低速路径跟踪控制的绝大多数需求。高速路径跟踪控制在受系统约束影响之外,还面临着较高车速带来的行驶稳定性不足问题的挑战,因此常采用能够将动力学层面的复杂系统约束纳入考虑且计算成本较低的LMPC作为路径跟踪控制方法。不过仅采用动力学层面的LMPC控制方法无法完全解决高速路径跟踪控制中路径跟踪精确性和车辆行驶稳定性之间存在耦合的问题,目前常见的解决思路是在路径跟踪控制中加入额外的速度调节或权重分配模块。此外,在高速路径跟踪控制中,地面附着系数等环境参数的影响也较大,因此地面附着系数等环境参数的估算也成为了高速路径跟踪控制领域的重要研究方向。
  • 图  1  不同前轮转角速度约束下的前轮转角变化趋势

    Figure  1.  The changing trend of front-wheel angle under different front wheel angle speed constraints

    图  2  车辆在不同前轮转角速度约束下的响应特性示意

    Figure  2.  Schematic diagram of vehicle response characteristics under different front-wheel angle speed constraints

    图  3  高速路径跟踪控制与低速路径跟踪控制面临的挑战之间的区别

    Figure  3.  The difference between the challenges faced by high-speed path following control and low-speed path following control

    表  1  低速路径跟踪控制中减少前轮转角速度速度约束影响的方法的特点

    Table  1.   The characteristics of the method to reduce the influence of the front-wheel angle speed constraint in the low-speed path following control

    MethodRobustness to disturbances other than curvature changesRobustness to parametersSaving costDriving efficiency
    Taking system constraints into consideration
    when planning the reference path
    +++
    Using preview control to make the controller respond early++
    Using model predictive control methods such as LMPC or NMPC as path tracking control methods++++
    Relaxing the front-wheel angle speed constraint+++
    Reducing speed+++
    下载: 导出CSV
  • [1] 陈慧岩, 熊光明, 龚建伟, 等. 无人驾驶汽车概论. 北京: 北京理工大学出版社, 2014

    Chen H Y, Xiong G M, Gong J W, et al. Introduction to Self-Driving Car. Beijing: Beijing Institute of Technology Press, 2014
    [2] Xu Y, Lu Z F, Shan X, et al. Study on an automatic parking method based on the sliding mode variable structure and fuzzy logical control. Symmetry, 2018, 10(10): 523 doi: 10.3390/sym10100523
    [3] 姜立标, 杨杰. 基于滑模控制的自动泊车系统路径跟踪研究. 农业机械学报, 2019, 50(2):356 doi: 10.6041/j.issn.1000-1298.2019.02.041

    Jiang L B, Yang J. Path tracking of automatic parking system based on sliding mode control. Trans Chin Soc Agric Mach, 2019, 50(2): 356 doi: 10.6041/j.issn.1000-1298.2019.02.041
    [4] Ye H, Jiang H B, Ma S D, et al. Linear model predictive control of automatic parking path tracking with soft constraints. Int J Adv Rob Syst, 2019, 16(3): 172988141985220 doi: 10.1177/1729881419852201
    [5] 陈龙, 罗杰, 杨旭, 等. 基于模糊纯追踪控制的自动泊车算法研究. 武汉理工大学学报 (信息与管理工程版), 2019, 41(3):316

    Chen L, Luo J, Yang X, et al. Research on automatic parking algorithms based on fuzzy pure tracking control. J Wuhan Univ Technol (Inf Manage Eng), 2019, 41(3): 316
    [6] 顾青, 白国星, 孟宇, 等. 基于非线性模型预测控制的自动泊车路径跟踪. 工程科学学报, 2019, 41(7):947

    Gu Q, Bai G X, Meng Y, et al. Path tracking of automatic parking based on nonlinear model predictive control. Chin J Eng, 2019, 41(7): 947
    [7] Song J, Zhang W W, Wu X C, et al. Laser-based SLAM automatic parallel parking path planning and tracking for passenger vehicle. IET Intell Transp Syst, 2019, 13(10): 1557 doi: 10.1049/iet-its.2019.0049
    [8] Zhang J X, Shi Z T, Yang X, et al. Trajectory planning and tracking control for autonomous parallel parking of a non-holonomic vehicle. Meas Control, https://doi.org/10.1177/0020294020944961.
    [9] 张家旭, 赵健, 施正堂, 等. 基于回旋曲线的垂直泊车轨迹规划与跟踪控制. 东南大学学报(自然科学版), 2020, 50(1):182 doi: 10.3969/j.issn.1001-0505.2020.01.024

    Zhang J X, Zhao J, Shi Z T, et al. Trajectory planning and tracking control for perpendicular parking based on clothoid curve. J Southeast Univ Nat Sci, 2020, 50(1): 182 doi: 10.3969/j.issn.1001-0505.2020.01.024
    [10] 张家旭, 赵健, 施正堂, 等. 采用HP自适应伪谱法的全自动泊车系统轨迹规划与跟踪控制. 西安交通大学学报, 2020, 54(6):176

    Zhang J X, Zhao J, Shi Z T, et al. A trajectory planning and tracking control method for fully-automatic parking system using HP-adaptive pseudo spectral method. J Xian Jiaotong Univ, 2020, 54(6): 176
    [11] 刘正铎, 张万枝, 吕钊钦, 等. 基于非线性模型的农用车路径跟踪控制器设计与试验. 农业机械学报, 2018, 49(7):23 doi: 10.6041/j.issn.1000-1298.2018.07.003

    Liu Z D, Zhang W Z, Lv Z Q, et al. Design and test of path tracking controller based on nonlinear model prediction. Trans Chin Soc Agric Mach, 2018, 49(7): 23 doi: 10.6041/j.issn.1000-1298.2018.07.003
    [12] 刘正铎, 张万枝, 吕钊钦, 等. 扰动下农用运输车辆路径跟踪控制器设计与试验. 农业机械学报, 2018, 49(12):378 doi: 10.6041/j.issn.1000-1298.2018.12.045

    Liu Z D, Zhang W Z, Lv Z Q, et al. Design on trajectory tracking controller of agricultural vehicles under disturbances. Trans Chin Soc Agric Mach, 2018, 49(12): 378 doi: 10.6041/j.issn.1000-1298.2018.12.045
    [13] 孟宇, 汪钰, 顾青, 等. 基于预见位姿信息的铰接式车辆 LQR-GA 路径跟踪控制. 农业机械学报, 2018, 49(6):375 doi: 10.6041/j.issn.1000-1298.2018.06.045

    Meng Y, Wang Y, Gu Q, et al. LQR-GA path tracking control of articulated vehicle based on predictive information. Trans Chin Soc Agric Mach, 2018, 49(6): 375 doi: 10.6041/j.issn.1000-1298.2018.06.045
    [14] 孟宇, 甘鑫, 白国星. 基于预瞄距离的地下矿用铰接车路径跟踪预测控制. 工程科学学报, 2019, 41(5):662

    Meng Y, Gan X, Bai G X. Path following control of underground mining articulated vehicle based on the preview control method. Chin J Eng, 2019, 41(5): 662
    [15] Nayl T, Nikolakopoulos G, Gustafsson T, et al. Design and experimental evaluation of a novel sliding mode controller for an articulated vehicle. Rob Autonom Syst, 2018, 103: 213 doi: 10.1016/j.robot.2018.01.006
    [16] Bai G X, Liu L, Meng Y, et al. Path tracking of mining vehicles based on nonlinear model predictive control. Appl Sci, 2019, 9(7): 1372 doi: 10.3390/app9071372
    [17] 罗维东, 马宝全, 孟宇, 等. 基于NMPC的地下无人铲运机反应式导航系统. 煤炭学报, 2020, 45(4):1536

    Luo W D, Ma B Q, Meng Y, et al. Reactive navigation system of underground unmanned Load-Haul-Dump unit based on NMPC. J China Coal Soc, 2020, 45(4): 1536
    [18] 林棻, 倪兰青, 赵又群, 等. 考虑横向稳定性的智能车辆路径跟踪控制. 华南理工大学学报(自然科学版), 2018, 46(1):78

    Lin F, Ni L Q, Zhao Y Q, et al. Path following control of intelligent vehicles considering lateral stability. J South China Univ Technol Nat Sci, 2018, 46(1): 78
    [19] Norouzi A, Kazemi R, Azadi S. Vehicle lateral control in the presence of uncertainty for lane change maneuver using adaptive sliding mode control with fuzzy boundary layer. Proc Inst Mech Eng Part I-J Syst Control Eng, 2018, 232(1): 12 doi: 10.1177/0959651817733222
    [20] 许德智, 邓竞, 颜文旭, 等. 智能车辆自动超车系统的数据驱动路径跟踪约束控制. 控制理论与应用, 2018, 35(3):283 doi: 10.7641/CTA.2017.60547

    Xu D Z, Deng J, Yan W X, et al. Novel data-driven path tracking constrained control for intelligent vehicle autonomous overtaking system. Control Theory Appl, 2018, 35(3): 283 doi: 10.7641/CTA.2017.60547
    [21] 冀杰, 唐志荣, 吴明阳, 等. 面向车道变换的路径规划及模型预测轨迹跟踪. 中国公路学报, 2018, 31(4):172 doi: 10.3969/j.issn.1001-7372.2018.04.021

    Ji J, Tang Z R, Wu M Y, et al. Path planning and tracking for lane changing based on model predictive control. China J Highway Transp, 2018, 31(4): 172 doi: 10.3969/j.issn.1001-7372.2018.04.021
    [22] Sun C Y, Zhang X, Xi L H, et al. Design of a path-tracking steering controller for autonomous vehicles. Energies, 2018, 11(6): 1451 doi: 10.3390/en11061451
    [23] Ji X W, Liu Y L, He X K, et al. Interactive control paradigm-based robust lateral stability controller design for autonomous automobile path tracking with uncertain disturbance: A dynamic game approach. IEEE Trans Veh Technol, 2018, 67(8): 6906 doi: 10.1109/TVT.2018.2834381
    [24] Cui Q J, Ding R J, Zhou B, et al. Path-tracking of an autonomous vehicle via model predictive control and nonlinear filtering. Proc Inst Mech Eng Part D-J Automob Eng, 2018, 232(9): 1237 doi: 10.1177/0954407017728199
    [25] 赵治国, 周良杰, 朱强. 无人驾驶车辆路径跟踪控制预瞄距离自适应优化. 机械工程学报, 2018, 54(24):166 doi: 10.3901/JME.2018.24.166

    Zhao Z G, Zhou L J, Zhu Q. Preview distance adaptive optimization for the path tracking control of unmanned vehicle. J Mech Eng, 2018, 54(24): 166 doi: 10.3901/JME.2018.24.166
    [26] Cao Y, Cao J Y, Yu F, et al. A new vehicle path-following strategy of the steering driver model using general predictive control method. Proc Inst Mech Eng Part C-J Eng Mech Eng Sci, 2018, 232(24): 4578 doi: 10.1177/0954406216685123
    [27] Yu L L, Kong D C, Shao X Y, et al. A path planning and navigation control system design for driverless electric bus. IEEE Access, 2018, 6: 53960 doi: 10.1109/ACCESS.2018.2868339
    [28] Guo H Y, Liu J, Cao D P, et al. Dual-envelop-oriented moving horizon path tracking control for fully automated vehicles. Mechatronics, 2018, 50: 422 doi: 10.1016/j.mechatronics.2017.02.001
    [29] Ji X W, He X K, Lv C, et al. Adaptive-neural-network-based robust lateral motion control for autonomous vehicle at driving limits. Control Eng Pract, 2018, 76: 41 doi: 10.1016/j.conengprac.2018.04.007
    [30] Guo J H, Luo Y G, Li K Q, et al. Coordinated path-following and direct yaw-moment control of autonomous electric vehicles with sideslip angle estimation. Mech Syst Signal Process, 2018, 105: 183 doi: 10.1016/j.ymssp.2017.12.018
    [31] Yang L, Yue M, Ma T. Path following predictive control for autonomous vehicles subject to uncertain tire-ground adhesion and varied road curvature. Int J Control Autom Syst, 2019, 17(1): 193 doi: 10.1007/s12555-017-0457-8
    [32] Ren Y, Zheng L, Khajepour A. Integrated model predictive and torque vectoring control for path tracking of 4-wheel-driven autonomous vehicles. IET Intell Transp Syst, 2019, 13(1): 98 doi: 10.1049/iet-its.2018.5095
    [33] Zhang C Y, Chu D F, Liu S D, et al. Trajectory planning and tracking for autonomous vehicle based on state lattice and model predictive control. IEEE Intell Transp Syst Mag, 2019, 11(2): 29 doi: 10.1109/MITS.2019.2903536
    [34] Wei S Y, Zou Y, Zhang X D, et al. An integrated longitudinal and lateral vehicle following control system with radar and vehicle-to-vehicle communication. IEEE Trans Veh Technol, 2019, 68(2): 1116 doi: 10.1109/TVT.2018.2890418
    [35] Mata S, Zubizarreta A, Pinto C. Robust tube-based model predictive control for lateral path tracking. IEEE Trans Intell Veh, 2019, 4(4): 569 doi: 10.1109/TIV.2019.2938102
    [36] Lin F, Chen Y K, Zhao Y Q, et al. Path tracking of autonomous vehicle based on adaptive model predictive control. Int J Adv Rob Syst, 2019, 16(5): 1729881419880089
    [37] 赵治国, 周良杰, 王凯. 四驱混合动力轿车转弯工况路径跟踪控制. 同济大学学报(自然科学版), 2019, 47(5):695

    Zhao Z G, Zhou L J, Wang K. Path tracking control of four-wheel drive hybrid electric car in steering. J Tongji Univ Nat Sci, 2019, 47(5): 695
    [38] Yuan K, Shu H, Huang Y J, et al. Mixed local motion planning and tracking control framework for autonomous vehicles based on model predictive control. IET Intell Transp Syst, 2019, 13(6): 950 doi: 10.1049/iet-its.2018.5387
    [39] 刘志强, 王一凡, 吴雪刚, 等. 基于线性路径跟踪控制的换道避撞控制策略研究. 中国公路学报, 2019, 32(6):86

    Liu Z Q, Wang Y F, Wu X G, et al. Collision avoidance by lane changing based on linear path-following control. China J Highway Transp, 2019, 32(6): 86
    [40] 李玉善, 迟元欣, 季学武, 等. 基于Pareto最优均衡理论的商用车路径跟踪与抗侧倾协同控制研究. 汽车工程, 2019, 41(6):654

    Li Y S, Chi Y X, Ji X W, et al. A research on cooperative path tracking and anti-roll control of commercial vehicle based on Pareto optimal equilibrium theory. Autom Eng, 2019, 41(6): 654
    [41] 李爽, 徐延海, 陈静, 等. 基于弧长预瞄的车辆侧向跟踪控制研究. 汽车工程, 2019, 41(6):668

    Li S, Xu Y H, Chen J, et al. A study on vehicle lateral tracking control based on arc-length preview. Autom Eng, 2019, 41(6): 668
    [42] 周苏, 吴楠, 支雪磊. 四轮独立转向电动汽车路径跟踪预测控制. 同济大学学报(自然科学版), 2019, 47(6):842

    Zhou S, Wu N, Zhi X L. Path tracking predictive control of four-wheel independent steering electric vehicle. J Tongji Univ Nat Sci, 2019, 47(6): 842
    [43] Hu C, Wang Z F, Taghavifar H, et al. MME-EKF-based path-tracking control of autonomous vehicles considering input saturation. IEEE Trans Veh Technol, 2019, 68(6): 5246 doi: 10.1109/TVT.2019.2907696
    [44] 陈特, 陈龙, 徐兴, 等. 基于Hamilton理论的无人车路径跟踪控制. 北京理工大学学报, 2019, 39(7):676

    Chen T, Chen L, Xu X, et al. Path following control of autonomous vehicles based on Hamilton theory. Trans Beijing Inst Technol, 2019, 39(7): 676
    [45] 陈特, 陈龙, 徐兴, 等. 分布式驱动无人车路径跟踪与稳定性协调控制. 汽车工程, 2019, 41(10):1109

    Chen T, Chen L, Xu X, et al. Integrated control of unmanned distributed driven vehicles path tracking and stability. Autom Eng, 2019, 41(10): 1109
    [46] 汪若尘, 魏振东, 叶青, 等. 视觉预瞄式智能车辆纵横向协同控制研究. 汽车工程, 2019, 41(7):763

    Wang R C, Wei Z D, Ye Q, et al. A research on visual preview longitudinal and lateral cooperative control of intelligent vehicle. Autom Eng, 2019, 41(7): 763
    [47] 李海青, 赵又群, 林棻, 等. 汽车高速紧急避障路径跟踪与主动防侧翻控制. 哈尔滨工业大学学报, 2019, 51(7):135 doi: 10.11918/j.issn.0367-6234.201806160

    Li H Q, Zhao Y Q, Lin F, et al. Research on high speed path tracking and rollover control for obstacle avoidance under emergency of vehicle. J Harbin Inst Technol, 2019, 51(7): 135 doi: 10.11918/j.issn.0367-6234.201806160
    [48] Wu Y, Wang L F, Zhang J Z, et al. Path following control of autonomous ground vehicle based on nonsingular terminal sliding mode and active disturbance rejection control. IEEE Trans Veh Technol, 2019, 68(7): 6379 doi: 10.1109/TVT.2019.2916982
    [49] 吴艳, 王丽芳, 李芳. 基于滑模自抗扰的智能车路径跟踪控制. 控制与决策, 2019, 34(10):2150

    Wu Y, Wang L F, Li F. Intelligent vehicle path following control based on sliding mode active disturbance rejection control. Control Decis, 2019, 34(10): 2150
    [50] 王艺, 蔡英凤, 陈龙, 等. 基于模型预测控制的智能网联汽车路径跟踪控制器设计. 机械工程学报, 2019, 55(8):136 doi: 10.3901/JME.2019.08.136

    Wang Y, Cai Y F, Chen L, et al. Design of intelligent and connected vehicle path tracking controller based on model predictive control. J Mech Eng, 2019, 55(8): 136 doi: 10.3901/JME.2019.08.136
    [51] 刘凯, 王威, 龚建伟, 等. 越野地形下智能车辆的动力学建模与轨迹跟踪. 北京理工大学学报, 2019, 39(9):933

    Liu K, Wang W, Gong J W, et al. Dynamic modeling and trajectory tracking of intelligent vehicles in off-road terrain. Trans Beijing Inst Technol, 2019, 39(9): 933
    [52] 白国星, 孟宇, 刘立, 等. 基于可变预测时域及速度的车辆路径跟踪控制. 中国机械工程, 2020, 31(11):1277 doi: 10.3969/j.issn.1004-132X.2020.11.003

    Bai G X, Meng Y, Liu L, et al. Path tracking control of vehicles based on variable prediction horizon and velocity. China Mech Eng, 2020, 31(11): 1277 doi: 10.3969/j.issn.1004-132X.2020.11.003
    [53] 王威, 陈慧岩, 马建昊, 等. 基于Frenet坐标系和控制延时补偿的智能车辆路径跟踪. 兵工学报, 2019, 40(11):2336 doi: 10.3969/j.issn.1000-1093.2019.11.019

    Wang W, Chen H Y, Ma J H, et al. Path tracking for intelligent vehicles based on Frenet coordinates and delayed control. Acta Armamentarii, 2019, 40(11): 2336 doi: 10.3969/j.issn.1000-1093.2019.11.019
    [54] 刁勤晴, 张雅妮, 朱凌云. 双预瞄点智能车大曲率路径的横纵向模糊控制. 中国机械工程, 2019, 30(12):1445 doi: 10.3969/j.issn.1004-132X.2019.12.010

    Diao Q Q, Zhang Y N, Zhu L Y. A lateral and longitudinal fuzzy control of intelligent vehicles with double preview points for large curvature roads. China Mech Eng, 2019, 30(12): 1445 doi: 10.3969/j.issn.1004-132X.2019.12.010
    [55] Zhang B, Zong C F, Chen G Y, et al. An adaptive-prediction-horizon model prediction control for path tracking in a four-wheel independent control electric vehicle. Proc Inst Mech Eng Part D-J Automob Eng, 2019, 233(12): 3246 doi: 10.1177/0954407018821527
    [56] Zhang B, Zong C F, Chen G Y, et al. Electrical vehicle path tracking based model predictive control with a laguerre function and exponential weight. IEEE Access, 2019, 7: 17082 doi: 10.1109/ACCESS.2019.2892746
    [57] Yao Q Q, Tian Y. A model predictive controller with longitudinal speed compensation for autonomous vehicle path tracking. Appl Sci, 2019, 9(22): 4739 doi: 10.3390/app9224739
    [58] Lee K, Jeon S, Kim H, et al. Optimal path tracking control of autonomous vehicle: Adaptive full-state linear quadratic gaussian (LQG) control. IEEE Access, 2019, 7: 109120 doi: 10.1109/ACCESS.2019.2933895
    [59] Sun C Y, Zhang X, Zhou Q, et al. A model predictive controller with switched tracking error for autonomous vehicle path tracking. IEEE Access, 2019, 7: 53103 doi: 10.1109/ACCESS.2019.2912094
    [60] Wang H Y, Liu B, Ping X Y, et al. Path tracking control for autonomous vehicles based on an improved MPC. IEEE Access, 2019, 7: 161064 doi: 10.1109/ACCESS.2019.2944894
    [61] Guo H Y, Cao D P, Chen H, et al. Model predictive path following control for autonomous cars considering a measurable disturbance: Implementation, testing, and verification. Mech Syst Signal Process, 2019, 118: 41 doi: 10.1016/j.ymssp.2018.08.028
    [62] Chen T, Chen L, Xu X, et al. Simultaneous path following and lateral stability control of 4WD-4WS autonomous electric vehicles with actuator saturation. Adv Eng Software, 2019, 128: 46 doi: 10.1016/j.advengsoft.2018.07.004
    [63] 苏树华, 陈刚. 机器人驾驶车辆的横向自适应反演切换控制. 汽车工程, 2020, 42(1):11

    Su S H, Chen G. Lateral adaptive backstepping switching control for robot-driven vehicles. Autom Eng, 2020, 42(1): 11
    [64] Guo N Y, Zhang X D, Zou Y, et al. A computationally efficient path following control strategy of autonomous electric vehicles with yaw motion stabilization. IEEE Trans Transp Electrification, 2020, 6(2): 728 doi: 10.1109/TTE.2020.2993862
    [65] 白国星, 刘丽, 孟宇, 等. 基于非线性模型预测控制的移动机器人实时路径跟踪. 农业机械学报, 2020, 51(9):47 doi: 10.6041/j.issn.1000-1298.2020.09.006

    Bai G X, Liu L, Meng Y, et al. Real-time path tracking of mobile robot based on nonlinear model predictive control. Trans Chin Soc Agric Mach, 2020, 51(9): 47 doi: 10.6041/j.issn.1000-1298.2020.09.006
    [66] 李军, 唐爽, 黄志祥, 等. 融合稳定性的高速无人驾驶车辆纵横向协调控制方法. 交通运输工程学报, 2020, 20(2):205

    Li J, Tang S, Huang Z X, et al. Longitudinal and lateral coordination control method of high-speed unmanned vehicles with integrated stability. J Traffic Transp Eng, 2020, 20(2): 205
    [67] Feng P P, Zhang J W, Yang W M. Observer-based state-feedback robust control for path following of autonomous ground vehicles. Proc Inst Mech Eng Part I-J Syst Control Eng, 2020, 234(2): 222 doi: 10.1177/0959651819851676
    [68] 蔡英凤, 李健, 孙晓强, 等. 智能汽车路径跟踪混合控制策略研究. 中国机械工程, 2020, 31(3):289 doi: 10.3969/j.issn.1004-132X.2020.03.006

    Cai Y F, Li J, Sun X Q, et al. Research on hybrid control strategy for intelligent vehicle path tracking. China Mech Eng, 2020, 31(3): 289 doi: 10.3969/j.issn.1004-132X.2020.03.006
    [69] 邓海鹏, 麻斌, 赵海光, 等. 自主驾驶车辆紧急避障的路径规划与轨迹跟踪控制. 兵工学报, 2020, 41(3):585 doi: 10.3969/j.issn.1000-1093.2020.03.020

    Deng H P, Ma B, Zhao H G, et al. Path planning and tracking control of autonomous vehicle for obstacle avoidance. Acta Armamentarii, 2020, 41(3): 585 doi: 10.3969/j.issn.1000-1093.2020.03.020
    [70] Hu C F, Zhao L X, Cao L, et al. Steering control based on model predictive control for obstacle avoidance of unmanned ground vehicle. Meas Control, 2020, 53(3-4): 501 doi: 10.1177/0020294019878871
    [71] 张亮修, 张铁柱, 吴光强. 考虑误差校正的智能车辆路径跟踪鲁棒预测控制. 西安交通大学学报, 2020, 54(3):20

    Zhang L X, Zhang T Z, Wu G Q. Robust predictive control for intelligent vehicle path tracking considering error feedback correction. J Xi'an Jiaotong Univ, 2020, 54(3): 20
    [72] Mohammadzadeh A, Taghavifar H. A robust fuzzy control approach for path-following control of autonomous vehicles. Soft Comput, 2020, 24(5): 3223 doi: 10.1007/s00500-019-04082-4
    [73] Yuan X F, Huang G M, Shi K. Improved adaptive path following control system for autonomous vehicle in different velocities. IEEE Trans Intell Transp Syst, 2020, 21(8): 3247 doi: 10.1109/TITS.2019.2925026
    [74] 周维, 过学迅, 裴晓飞, 等. 基于RRT与MPC的智能车辆路径规划与跟踪控制研究. 汽车工程, 2020, 42(9):1151

    Zhou W, Guo X X, Pei X F, et al. Study on path planning and tracking control for intelligent vehicle based on RRT and MPC. Autom Eng, 2020, 42(9): 1151
    [75] Sun Z Y, Wang R C, Ye Q, et al. Investigation of intelligent vehicle path tracking based on longitudinal and lateral coordinated control. IEEE Access, 2020, 8: 105031 doi: 10.1109/ACCESS.2020.2994437
    [76] Tang L Q, Yan F W, Zou B, et al. An improved kinematic model predictive control for high-speed path tracking of autonomous vehicles. IEEE Access, 2020, 8: 51400 doi: 10.1109/ACCESS.2020.2980188
    [77] Cui Q J, Ding R J, Wei C F, et al. Path-tracking and lateral stabilisation for autonomous vehicles by using the steering angle envelope. Veh Syst Dyn, https://doi.org/10.1080/00423114.2020.1776344.
    [78] Zhang W L, Drugge L, Nybacka M, et al. Active camber for enhancing path following and yaw stability of over-actuated autonomous electric vehicles. Veh Syst Dyn, https://doi.org/10.1080/00423114.2020.1723653.
    [79] 张家旭, 周时莹, 施正堂, 等. 采用滑模条件积分的无人驾驶汽车弯道超车路径规划与跟踪控制. 控制理论与应用, http://kns.cnki.net/kcms/detail/44.1240.tp.20201015.1122.008.html.

    Zhang J X, Zhou S Y, Shi Z T, et al. Path planning and tracking control for corner overtaking of driverless vehicle using sliding mode technique with conditional integrators. Control Theory Appl, http://kns.cnki.net/kcms/detail/44.1240.tp.20201015.1122.008.html.
    [80] 张家旭, 王欣志, 赵健, 等. 汽车高速换道避让路径规划与离散滑模跟踪控制. 吉林大学学报(工学版), https://doi.org/10.13229/j.cnki.jdxbgxb20200057.

    Zhang J X, Wang X Z, Zhao J, et al. Path planning and discrete sliding mode tracking control for high-speed lane changing collision avoidance of vehicle. J Jilin Univ Eng Technol, https://doi.org/10.13229/j.cnki.jdxbgxb20200057.
    [81] 王国栋, 刘洋, 李绍松, 等. 基于轮胎状态刚度预测的极限工况路径跟踪控制研究. 自动化学报, https://doi.org/10.16383/j.aas.c190349.

    Wang G D, Liu Y, Li S S, et al. Research on path tracking control under limit conditions based on tire state stiffness prediction. Acta Autom Sin, https://doi.org/10.16383/j.aas.c190349.
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  707
  • HTML全文浏览量:  137
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-12
  • 网络出版日期:  2021-03-19
  • 刊出日期:  2021-03-31

目录

    /

    返回文章
    返回