• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热喷涂制备非晶合金涂层性能的研究进展

辛蔚 王玉江 魏世丞 王博 梁义 袁悦 徐滨士

辛蔚, 王玉江, 魏世丞, 王博, 梁义, 袁悦, 徐滨士. 热喷涂制备非晶合金涂层性能的研究进展[J]. 工程科学学报, 2021, 43(3): 311-320. doi: 10.13374/j.issn2095-9389.2020.11.20.001
引用本文: 辛蔚, 王玉江, 魏世丞, 王博, 梁义, 袁悦, 徐滨士. 热喷涂制备非晶合金涂层性能的研究进展[J]. 工程科学学报, 2021, 43(3): 311-320. doi: 10.13374/j.issn2095-9389.2020.11.20.001
XIN Wei, WANG Yu-jiang, WEI Shi-cheng, WANG Bo, LIANG Yi, YUAN Yue, XU Bin-shi. Research progress on the properties of amorphous alloy coatings prepared by thermal spraying[J]. Chinese Journal of Engineering, 2021, 43(3): 311-320. doi: 10.13374/j.issn2095-9389.2020.11.20.001
Citation: XIN Wei, WANG Yu-jiang, WEI Shi-cheng, WANG Bo, LIANG Yi, YUAN Yue, XU Bin-shi. Research progress on the properties of amorphous alloy coatings prepared by thermal spraying[J]. Chinese Journal of Engineering, 2021, 43(3): 311-320. doi: 10.13374/j.issn2095-9389.2020.11.20.001

热喷涂制备非晶合金涂层性能的研究进展

doi: 10.13374/j.issn2095-9389.2020.11.20.001
基金项目: 国家重点研发计划资助项目(2019YFC1908100)
详细信息
    通讯作者:

    E-mail:yjwang201617@163.com

  • 中图分类号: TG131;TG174.442

Research progress on the properties of amorphous alloy coatings prepared by thermal spraying

More Information
  • 摘要: 首先介绍了非晶合金的理论基础,然后从耐磨性和耐蚀性两个方面入手,详细地阐述了国内外对于热喷涂非晶合金涂层性能研究进展情况,并系统地总结了非金合金涂层在耐磨性和耐蚀性上的本质联系和根本矛盾,最后指出热喷涂非晶合金涂层性能研究上的局限性,提出三点问题:对于非晶合金基础理论的研究还处在起步阶段、热喷涂制备非晶合金涂层的合金体系种类少、制备非晶合金涂层的热喷涂技术有待开发,并针对以上三点问题提出热喷涂制备非晶合金涂层性能研究的未来发展方向。
  • 图  1  非晶和晶体的形成过程[27]

    Figure  1.  Diagram of the formation of amorphous and crystal materials[27]

    图  2  不同载荷下摩擦系数随滑动时间的变化[29]。(a)非晶合金涂层(ASC);(b)不锈钢涂层(SSC)

    Figure  2.  Variation of COFs with sliding time[29]: (a) amorphous steel coating; (b) stainless steel coating

    图  3  不同送粉率下涂层的X射线衍射图谱[30]

    Figure  3.  XRD patterns of the various high-velocity oxygen-fuel sprayed coatings prepared with different powder feed rates[30]

    图  4  不同条件下实验样品的磨损率和摩擦系数[31]

    Figure  4.  Wear rates and friction coefficients of the tested samples[31]

    图  5  不同热处理温度下涂层磨损量与H/Er的关系[32]

    Figure  5.  Relationship between the wear loss and the H/Er ratio for the coating[32]

    图  6  不同摩擦学条件下铁基非晶合金涂层和基体的磨损率[33]

    Figure  6.  Wear rates of Fe-based amorphous coatings and the reference 316L crystalline steels under various sliding conditions[33]

    图  7  铁基非晶合金涂层在不同条件下的高温摩擦学模拟图[33]。(a)真空;(b)大气

    Figure  7.  Modeling illustrations of the elevated-temperature tribology process for the Fe-based ACs[33]: (a) vacuum; (b) air

    图  8  铁基非晶合金涂层磨损机理图[34]

    Figure  8.  Schematic diagram showing the wear mechanisms in the Fe-based amorphous coating[34]

    图  9  涂层、316L钢和1045钢在质量分数3.5% NaCl溶液中的动电位极化曲线[35]

    Figure  9.  Potentiodynamic polarization curves of the high-velocity air-fuel coating, 316L steel, and 1045 steel in mass fraction of 3.5% NaCl solution[35]

    图  10  电化学试验后的表面形貌图[36]. 2 mol·L−1 NaOH溶液中的涂层(a)和不锈钢(b);3.5% NaCl溶液中的涂层(c)和不锈钢(d)

    Figure  10.  SEM images of surfaces after the electrochemical test[36]: coating (a) and stainless steel (b) in 2 mol·L−1 NaOH solution; coating (c) and stainless steel (d) in 3.5% NaCl solution

    图  11  不同喷涂功率下的非晶合金涂层、基体和镀锌钢的动电位极化曲线[37]

    Figure  11.  Potentiodynamic polarization curves of the Fe-based composite coatings, deposited with various plasma powers, in comparison with galvanized steel and mild steel substrate[37]

    图  12  腐蚀条件下退火温度对质量损失的影响[39]

    Figure  12.  Effect of annealing temperature on the mass loss[39]

    图  13  涂层性能表征。(a)质量随浸泡时间的变化;(b)涂层的差示扫描量热分析曲线[41]

    Figure  13.  Performance characterization of coating: (a) mass as a function of immersion time; (b) DSC curve of the outer Fe-based amorphous coating[41]

  • [1] Liu C, Liu Y, Wang Q, et al. Nano-dual-phase metallic glass film enhances strength and ductility of a gradient nanograined magnesium alloy. Adv Sci, 2020, 7(19): 2001480 doi: 10.1002/advs.202001480
    [2] Li S, Huang P, Wang F. Achieving pronounced β-relaxations and improved plasticity in CuZr metallic glass. J Alloys Compd, 2021, 850: 156774 doi: 10.1016/j.jallcom.2020.156774
    [3] Li Q, Shang Z X, Sun X, et al. High-strength and tunable plasticity in sputtered Al–Cr alloys with multistage phase transformations. Int J Plast, 2021, 137: 102915 doi: 10.1016/j.ijplas.2020.102915
    [4] Gao M H, Zhang S D, Yang B J, et al. Prominent inhibition efficiency of sodium nitrate to corrosion of Al-based amorphous alloy. Appl Surf Sci, 2020, 530: 147211 doi: 10.1016/j.apsusc.2020.147211
    [5] Gu J L, Lu S Y, Shao Y, et al. Segregating the homogeneous passive film and understanding the passivation mechanism of Ti-based metallic glasses. Corros Sci, 2021, 178: 109078 doi: 10.1016/j.corsci.2020.109078
    [6] Sohrabi N, Panikar R S, Jhabvala J, et al. Laser coating of a Zr-based metallic glass on an aluminum substrate. Surf Coat Technol, 2020, 400: 126223 doi: 10.1016/j.surfcoat.2020.126223
    [7] Tian L, Yang Y Q, Meyer T, et al. Environmental transmission electron microscopy study of hydrogen charging effect on a Cu–Zr metallic glass. Mater Res Lett, 2020, 8(12): 439 doi: 10.1080/21663831.2020.1791273
    [8] Sarac B, Zadorozhnyy V, Ivanov Y P, et al. Surface-governed electrochemical hydrogenation in FeNi-based metallic glass. J Power Sources, 2020, 475: 228700 doi: 10.1016/j.jpowsour.2020.228700
    [9] 黄浩, 张勇. 高熵合金与非晶合金柔性材料. 工程科学学报, https://doi.org/10.13374/j.issn2095-9389.2020.08.31.003

    Huang H, Zhang Y. High-entropy alloy and metallic glass flexible materials. Chin J Eng, https://doi.org/10.13374/j.issn2095-9389.2020.08.31.003
    [10] Hou L, Li M R, Jiang C, et al. Thermal and magnetic properties of Fe(Co)BCCu amorphous alloys with high saturation magnetization of 1.77 T. J Alloys Compd, 2021, 853: 157071 doi: 10.1016/j.jallcom.2020.157071
    [11] Li F M, Feng J Q, Yi J, et al. Magnetocaloric properties of LaFe11.4Si1.6 based amorphous alloys. J Alloys Compd, 2020, 845: 156191 doi: 10.1016/j.jallcom.2020.156191
    [12] Nosenko A V, Kyrylchuk V V, Semen’Ko M P, et al. Soft magnetic cobalt based amorphous alloys with low saturation induction. J Magn Magn Mater, 2020, 515: 167328 doi: 10.1016/j.jmmm.2020.167328
    [13] Cheng J Y, Li T, Ullah S, et al. Giant magnetocaloric effect in nanostructured Fe–Co–P amorphous alloys enabled through pulse electrodeposition. Nanotechnology, 2020, 31(38): 385704 doi: 10.1088/1361-6528/ab9971
    [14] Jia Z, Jiang J L, Sun L G, et al. Role of boron in enhancing electron delocalization to improve catalytic activity of Fe-based metallic glasses for persulfate-based advanced oxidation. ACS Appl Mater Interfaces, 2020, 12(40): 44789 doi: 10.1021/acsami.0c13324
    [15] Kassa S T, Hu C C, Keshebo D L, et al. Surface modification of high-rejection ultrafiltration membrane with antifouling capability using activated oxygen treatment and metallic glass deposition. Appl Surf Sci, 2020, 529: 147131 doi: 10.1016/j.apsusc.2020.147131
    [16] Chen S Q, Li M, Ma X Y, et al. Influence of inorganic ions on degradation capability of Fe-based metallic glass towards dyeing wastewater remediation. Chemosphere, 2021, 264: 128392 doi: 10.1016/j.chemosphere.2020.128392
    [17] Rajan S T, Anusha T V V, Terada-Nakaishi M, et al. Zirconium-based metallic glass and zirconia coatings to inhibit bone formation on titanium. Biomed Mater, 2020, 15(6): 065019 doi: 10.1088/1748-605X/aba23a
    [18] Li R F, Qiu Y, Zhu Y Y. Friction wear property of laser surface processed Ni-based amorphous alloy coatings. Int J Mod Phys B, 2019, 33: 1940014 doi: 10.1142/S0217979219400149
    [19] Wang H Z, Cheng Y H, Yang J Y, et al. Microstructure and properties of laser clad Fe-based amorphous alloy coatings containing Nb powder. J Non-Crystalline Solids, 2020, 550: 120351 doi: 10.1016/j.jnoncrysol.2020.120351
    [20] Su Y P, Yue T M. Microstructures of the bonding area in laser cladded Zr-based amorphous alloy coating on magnesium. Mater Today Commun, 2020, 25: 101715 doi: 10.1016/j.mtcomm.2020.101715
    [21] Yoon J S, Doerr H J, Deshpandey C V, et al. Amorphous nickel phosphide alloy coatings obtained by magnetron sputtering methods for magnetic recording disk. J Electrochem Soc, 2019, 136(11): 3513
    [22] Chu J P, Lai B Z, Yiu P, et al. Metallic glass coating for improving diamond dicing performance. Sci Rep, 2020, 10(1): 12432 doi: 10.1038/s41598-020-69399-9
    [23] He R R, Li M F, Malomo B, et al. Enhancing corrosion and mechanical properties of 304 stainless steel by depositing and annealing Zr75Cu25 thin-film metallic glass. Surf Coat Technol, 2020, 400: 126221 doi: 10.1016/j.surfcoat.2020.126221
    [24] 李长久. 热喷涂技术应用及研究进展与挑战. 热喷涂技术, 2018, 10(4):1 doi: 10.3969/j.issn.1674-7127.2018.04.001

    Li C J. Applications, research progresses and future challenges of thermal spray technology. Therm Spray Technol, 2018, 10(4): 1 doi: 10.3969/j.issn.1674-7127.2018.04.001
    [25] Miura H, Isa S, Omuro K. Production of amorphous iron-nickel based alloys by flame-spray quenching and coatings on metal substrates. Trans Jpn Inst Met, 1984, 25(4): 284 doi: 10.2320/matertrans1960.25.284
    [26] Miracle D B. A structural model for metallic glasses. Nat Mater, 2004, 3(10): 697 doi: 10.1038/nmat1219
    [27] Debenedetti P G, Stillinger F H. Supercooled liquids and the glass transition. Nature, 2001, 410(6825): 259 doi: 10.1038/35065704
    [28] 管鹏飞, 王兵, 吴义成, 等. 不均匀性: 非晶合金的灵魂. 物理学报, 2017, 66(17):154

    Guan P F, Wang B, Wu Y C, et al. Heterogeneity: the soul of metallic glasses. Acta Phys Sin, 2017, 66(17): 154
    [29] Guo H, Zhang S D, Sun W H, et al. Differences in dry sliding wear behavior between HVAF-sprayed amorphous steel and crystalline stainless steel coatings. J Mater Sci Technol, 2019, 35(5): 865 doi: 10.1016/j.jmst.2018.11.006
    [30] Nayak S K, Kumar A, Pathak A, et al. Multi-scale mechanical properties of Fe-based amorphous/nanocrystalline composite coating synthesized by HVOF spraying. J Alloys Compd, 2020, 825: 154120 doi: 10.1016/j.jallcom.2020.154120
    [31] Cheng J B, Zhang Q, Feng Y, et al. Microstructure and sliding wear behaviors of plasma-sprayed Fe-based amorphous coatings in 3.5 wt. % NaCl solution. J Therm Spray Technol, 2019, 28(5): 1049 doi: 10.1007/s11666-019-00866-0
    [32] Cheng J B, Liang X B, Xu B S. Devitrification of arc-sprayed FeBSiNb amorphous coatings: Effects on wear resistance and mechanical behavior. Surf Coat Technol, 2013, 235: 720 doi: 10.1016/j.surfcoat.2013.08.054
    [33] Liang D D, Ma J, Cai Y F, et al. Characterization and elevated-temperature tribological performance of AC–HVAF-sprayed Fe-based amorphous coating. Surf Coat Technol, 2020, 387: 125535 doi: 10.1016/j.surfcoat.2020.125535
    [34] Li X Q, Zhai H M, Li W S, et al. Dry sliding wear behaviors of Fe-based amorphous metallic coating synthesized by d-gun spray. J Non-Crystalline Solids, 2020, 537: 120018 doi: 10.1016/j.jnoncrysol.2020.120018
    [35] Huang F, Kang J J, Yue W, et al. Corrosion behavior of FeCrMoCBY amorphous coating fabricated by high-velocity air fuel spraying. J Therm Spray Technol, 2019, 28(4): 842 doi: 10.1007/s11666-019-00843-7
    [36] Wang G, Huang Z J, Xiao P, et al. Spraying of Fe-based amorphous coating with high corrosion resistance by HVAF. J Manuf Processes, 2016, 22: 34 doi: 10.1016/j.jmapro.2016.01.009
    [37] Kumar A, Nayak S K, Bijalwan P, et al. Mechanical and corrosion properties of plasma-sprayed Fe-based amorphous/nanocrystalline composite coating. Adv Mater Process Technol, 2019, 5(2): 371
    [38] Kumar A, Nayak S K, Bijalwan P, et al. Optimization of mechanical and corrosion properties of plasma sprayed low-chromium containing Fe-based amorphous/nanocrystalline composite coating. Surf Coat Technol, 2019, 370: 255 doi: 10.1016/j.surfcoat.2019.05.010
    [39] Liu S L, Zhu Y S, Lai X Y, et al. Influence of different heat treatment temperatures on the microstructure, corrosion, and mechanical properties behavior of Fe-based amorphous/nanocrystalline coatings. Coatings, 2019, 9(12): 858 doi: 10.3390/coatings9120858
    [40] Zhang Z B, Liang X B, Xu B S. Preparation of Al-based amorphous/nanocrystalline composite coating on Mg-based alloys precipitated by arc spraying process. Rare Met Mater Eng, 2012, 41(Suppl 1): 439
    [41] Guo S F, Pan F S, Zhang H J, et al. Fe-based amorphous coating for corrosion protection of magnesium alloy. Mater Des, 2016, 108: 624 doi: 10.1016/j.matdes.2016.07.031
    [42] 邱实, 张连民, 胡红祥, 等. HVAF制备铝基非晶合金涂层及其腐蚀行为研究. 中国舰船研究, 2020, 15(4):89

    Qiu S, Zhang L M, Hu H X, et al. Preparation of HVAF prepared Al-based amorphous coating and its corrosion behavior characterization. Chin J Ship Res, 2020, 15(4): 89
    [43] Kim K W, Ham G S, Cho G S, et al. Microstructures and corrosion properties of novel Fe46.8–Mo30.6–Cr16.6–C4.3–B1.7 metallic glass coatings manufactured by vacuum plasma spray process. Intermetallics, 2021, 130: 107061 doi: 10.1016/j.intermet.2020.107061
    [44] Ham G S, Kim K W, Cho G S, et al. Fabrication, microstructure and wear properties of novel Fe–Mo–Cr–C–B metallic glass coating layers manufactured by various thermal spray processes. Mater Des, 2020, 195: 109043 doi: 10.1016/j.matdes.2020.109043
    [45] Su J, Kang J J, Yue W, et al. Comparison of tribological behavior of Fe-based metallic glass coatings fabricated by cold spraying and high velocity air fuel spraying. J Non-Crystalline Solids, 2019, 522: 119582 doi: 10.1016/j.jnoncrysol.2019.119582
    [46] Cao Q, Huang G S, Ma L, et al. Comparison of a cold‐sprayed and plasma-sprayed Fe25Cr20Mo1Si amorphous alloy coatings on 40Cr substrates. Mater Corros, 2020, 71(11): 1872 doi: 10.1002/maco.202011558
    [47] Vignesh S, Shanmugam K, Balasubramanian V, et al. Identifying the optimal HVOF spray parameters to attain minimum porosity and maximum hardness in iron based amorphous metallic coatings. Defence Technol, 2017, 13(2): 101 doi: 10.1016/j.dt.2017.03.001
    [48] Wasekar N P, Hebalkar N, Jyothirmayi A, et al. Influence of pulse parameters on the mechanical properties and electrochemical corrosion behavior of electrodeposited Ni-W alloy coatings with high tungsten content. Corros Sci, 2020, 165: 108409 doi: 10.1016/j.corsci.2019.108409
    [49] Huang F, Kang J J, Yue W, et al. Effect of heat treatment on erosion-corrosion of Fe-based amorphous alloy coating under slurry impingement. J Alloys Compd, 2020, 820: 153132 doi: 10.1016/j.jallcom.2019.153132
    [50] 刘明明. 封孔处理对HVOF铁基非晶涂层的腐蚀和冲蚀行为的影响研究[学位论文]. 合肥: 中国科学技术大学, 2019

    Liu M M. The Effect of Sealing Treatment on the Corrosion and Erosion-Corrosion of High-Velocity Oxy-Fuel Fe-Based Amorphous Coating [Dissertation]. Hefei: University of Science and Technology of China, 2019
    [51] Liu L, Wu L, Chen X B, et al. Enhanced protective coatings on Ti–10V–2Fe–3Al alloy through anodizing and post-sealing with layered double hydroxides. J Mater Sci Technol, 2020, 37: 104 doi: 10.1016/j.jmst.2019.07.032
  • 加载中
图(13)
计量
  • 文章访问数:  278
  • HTML全文浏览量:  205
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-20
  • 刊出日期:  2021-03-19

目录

    /

    返回文章
    返回