孙浩, 苏楠, 金爱兵, 陈帅军, 韦立昌, 徐浩淳. 温度对不同尺寸砂岩巴西劈裂特性影响[J]. 工程科学学报, 2022, 44(1): 26-38. DOI: 10.13374/j.issn2095-9389.2021.07.26.001
引用本文: 孙浩, 苏楠, 金爱兵, 陈帅军, 韦立昌, 徐浩淳. 温度对不同尺寸砂岩巴西劈裂特性影响[J]. 工程科学学报, 2022, 44(1): 26-38. DOI: 10.13374/j.issn2095-9389.2021.07.26.001
SUN Hao, SU Nan, JIN Ai-bing, CHEN Shuai-jun, WEI Li-chang, XU Hao-chun. Effects of temperature on Brazilian splitting characteristics of sandstone with different sizes[J]. Chinese Journal of Engineering, 2022, 44(1): 26-38. DOI: 10.13374/j.issn2095-9389.2021.07.26.001
Citation: SUN Hao, SU Nan, JIN Ai-bing, CHEN Shuai-jun, WEI Li-chang, XU Hao-chun. Effects of temperature on Brazilian splitting characteristics of sandstone with different sizes[J]. Chinese Journal of Engineering, 2022, 44(1): 26-38. DOI: 10.13374/j.issn2095-9389.2021.07.26.001

温度对不同尺寸砂岩巴西劈裂特性影响

Effects of temperature on Brazilian splitting characteristics of sandstone with different sizes

  • 摘要: 为研究高温与尺寸效应耦合作用下的砂岩巴西劈裂特性,分别对经过25、200、400、600、800和1000 ℃高温处理后的标准砂岩试件进行巴西劈裂室内试验,并基于颗粒流软件开展不同尺寸高温砂岩巴西劈裂数值模拟,研究砂岩巴西劈裂强度及其劣化规律、孔隙率增加相对于裂纹扩展贯通的滞后性规律。研究结果表明:(1)在25~1000 ℃的温度范围和50~100 mm的直径范围内,温度与尺寸效应对砂岩巴西劈裂强度均有显著影响,且尺寸效应影响程度更大。在加热过程中,由于岩石内部首先发生热膨胀,然后在热应力作用下产生损伤,因此砂岩劈裂强度先有所增大,在400 ℃之后持续降低,劈裂强度下降约34.66%~35.10%;随着尺寸增大,岩石内部积聚的能量释放产生大量微裂隙,导致砂岩试样劈裂强度降低,下降约55.61%~56.99%。(2)砂岩巴西劈裂强度劣化幅值与其直径之间满足负指数函数关系,可用于预测不同尺寸高温砂岩的巴西劈裂强度。(3)砂岩在巴西劈裂过程中的孔隙率增加相对于裂隙扩展贯通滞后的荷载差值随温度升高以及尺寸增大而增大;考虑两因素的耦合作用,尺寸效应对荷载差值的影响程度随温度的升高而降低,温度对荷载差值的影响程度随砂岩尺寸的增大而降低。研究成果对火灾后顶板维护,初步预测顶板强度具有一定参考意义,也可为核废料处理、地热资源开发和深井工程等涉及高温和尺寸变化的岩体工程设计提供有益参考。

     

    Abstract: To study the Brazilian splitting characteristics of sandstone under the coupling effect of high temperature and sandstone’s size, Brazilian splitting laboratory tests were carried out on standard sandstone specimens treated at 25, 200, 400, 600, 800, and 1000 ℃, respectively. A Brazilian splitting numerical simulation of sandstone with different sizes under high temperature was carried out based on particle flow software to study the Brazilian splitting strength and deterioration law of sandstone. In addition, the hysteresis law of porosity rise relative to the crack propagation and penetration was also investigated. Results are as follows: (1) In the temperature range of 25−1000 ℃ and in the diameter range of 50–100 mm, the temperature and size significantly affect the Brazilian splitting strength of sandstone, with size having a greater influence. During the heating process, due to the initial thermal expansion in the rock and subsequent damage under the action of thermal stress, the splitting strength of sandstone first increases and then decreases by approximately 34.66%–35.10% after 400 ℃. With the increase in the size, the energy accumulated in the rock is released, and a large number of microfractures are produced, resulting in decreasing the splitting strength of sandstone samples by approximately 55.61%–56.99%. (2) The relationship between the degradation amplitude of the Brazilian splitting strength of sandstone and its diameter satisfies a negative exponential function, which can predict the Brazilian splitting strength of sandstone with different sizes at high temperatures. (3) The porosity of sandstone increases during Brazilian fracturing, and the load difference relative to fracture propagation and penetration increases with increasing temperature and size. Considering the coupling effect of the two factors, the influence of size and temperature on the load difference decreases with increasing temperature and sandstone’s size. This study is of high significance for roof maintenance and preliminary prediction of the roof strength after a fire. In addition, it can also provide a useful reference for rock engineering design involving high temperatures and size changes, such as nuclear waste treatment, geothermal resource development, and deep well engineering.

     

/

返回文章
返回