吴江, 许皓渊, 闫昊琪, 熊锋, 曹星宇, 高路路, 段京良, 马飞. 无监督学习型凿岩钻臂逆运动学求解方法[J]. 工程科学学报. DOI: 10.13374/j.issn2095-9389.2024.01.13.002
引用本文: 吴江, 许皓渊, 闫昊琪, 熊锋, 曹星宇, 高路路, 段京良, 马飞. 无监督学习型凿岩钻臂逆运动学求解方法[J]. 工程科学学报. DOI: 10.13374/j.issn2095-9389.2024.01.13.002
Inverse kinematics solution of unsupervised learning drilling boom[J]. Chinese Journal of Engineering. DOI: 10.13374/j.issn2095-9389.2024.01.13.002
Citation: Inverse kinematics solution of unsupervised learning drilling boom[J]. Chinese Journal of Engineering. DOI: 10.13374/j.issn2095-9389.2024.01.13.002

无监督学习型凿岩钻臂逆运动学求解方法

Inverse kinematics solution of unsupervised learning drilling boom

  • 摘要: 凿岩台车钻臂智能寻孔控制对提升凿岩钻孔作业精度和效率具有重要意义,逆运动学求解是实现钻臂精确快速寻孔控制的核心。现有解析法或数值法无法满足复杂钻臂逆运动学求解精度或时间效率要求,而传统神经网络方法又过分依赖标签数据,求解结果可靠性较低。针对此问题,本文提出一种考虑安全约束的无监督学习型神经网络逆运动学求解方法。区别于传统解法,该方法不依赖标签数据,直接将期望钻臂末端位姿作为网络输入,以实际末端位姿与期望末端位姿的差异作为优化目标,通过梯度下降驱动网络更新。同时,为确保关节位置的安全性,本文构造了安全碰撞惩罚,将罚项引入到求解目标函数中,促使网络输出的关节量满足特定环境的约束条件。上述的研究方法不仅提高了逆运动学求解的精度,而且显著降低了逆运动学解的碰撞率。实验结果表明,使用无监督学习型神经网络逆运动学求解方法所求得的寻孔误差均值在5~7 mm之间,相较于监督学习型方法,逆运动学求解精度提升约238.46%;引入约束后,该方法在不损失求解精度的前提下,逆运动学解的碰撞率降低了92.15%。

     

    Abstract: The intelligent control of rock drilling rig boom's hole-seeking process is crucial for enhancing the accuracy and efficiency of rock drilling operations. Inverse kinematics solution (IKS) is the core of achieving precise and rapid hole-seeking control of the boom. Existing analytical and numerical techniques are inadequate in fulfilling the accuracy and time efficiency demands for IKS in complex drilling boom scenarios. Conventional neural network (NN) approaches, heavily dependent on labeled data, often fall short in solution reliability. To overcome these challenges, this study introduces an unsupervised learning-based NN method for IKS, with an emphasis on safety constraints. This novel method diverges from traditional approaches by not relying on labeled data. It employs the desired end position of the drilling boom as the input for the network, focusing on minimizing the discrepancy between the actual and intended end positions. A critical innovation of this study is the integration of a safety collision penalty into the solution's objective function, ensuring the network's output for joint positions adheres to specific environmental limitations. Empirical evidence demonstrates that this unsupervised learning-based method achieves a mean hole-seeking error ranging from 5 to 7 mm in IKS, a significant improvement of about 238.46% over supervised learning methods. Moreover, the introduction of safety constraints has successfully reduced the collision rate in IKS solutions by 92.15%, without any sacrifice in the accuracy of the solutions.

     

/

返回文章
返回