• 《工程索引》(EI)刊源期刊
  • Scopus
  • 中文核心期刊
  • 中国科学引文数据库来源期刊

基于积分型Lyapunov函数的随机非线性系统的自适应控制

王飞, 张天平, 施枭铖

王飞, 张天平, 施枭铖. 基于积分型Lyapunov函数的随机非线性系统的自适应控制[J]. 工程科学学报, 2012, 34(1): 21-25. DOI: 10.13374/j.issn1001-053x.2012.01.005
引用本文: 王飞, 张天平, 施枭铖. 基于积分型Lyapunov函数的随机非线性系统的自适应控制[J]. 工程科学学报, 2012, 34(1): 21-25. DOI: 10.13374/j.issn1001-053x.2012.01.005
WANG Fei, ZHANG Tian-ping, SHI Xiao-cheng. Adaptive control for stochastic nonlinear systems based on the integral-type Lyapunov function[J]. Chinese Journal of Engineering, 2012, 34(1): 21-25. DOI: 10.13374/j.issn1001-053x.2012.01.005
Citation: WANG Fei, ZHANG Tian-ping, SHI Xiao-cheng. Adaptive control for stochastic nonlinear systems based on the integral-type Lyapunov function[J]. Chinese Journal of Engineering, 2012, 34(1): 21-25. DOI: 10.13374/j.issn1001-053x.2012.01.005

基于积分型Lyapunov函数的随机非线性系统的自适应控制

基金项目: 

国家自然科学基金资助项目(61174046

60904030)

详细信息
    通信作者:

    张天平,E-mail:tpzhang@yzu.edu.cn

  • 分类号: TP273+.2

Adaptive control for stochastic nonlinear systems based on the integral-type Lyapunov function

  • 摘要: 针对一类带有未知虚拟控制增益的随机严格反馈非线性系统,基于后推设计,引入积分型Lyapunov函数,并利用神经网络的逼近能力,提出了一种自适应神经网络控制方案.与现有研究结果相比,放宽了对控制系统的要求,取消了对于未知函数的限制条件.通过Lyapunov方法证明了闭环系统的所有误差信号依概率有界.仿真结果验证了所给控制方案的有效性.
    Abstract: Based on the backstepping technique, introducing the integral-type Lyapunov function and utilizing the approximation capability of neural networks, an adaptive neural network control scheme was proposed for a class of stochastic strict-feedbagk nonlinear systems with unknown virtual control gain. Compared with existing literatures, the proposed approach relaxes the requirements of the control system and cancels the restriction of the unknown function, By the Lyapunov method, it is shown that all error variables in the closed-loop system are bounded in probability. Simulation results illustrate the effectiveness of the proposed control scheme.
计量
  • 文章访问数:  404
  • HTML全文浏览量:  106
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-07
  • 网络出版日期:  2021-07-29
  • 刊出日期:  2012-01-24

目录

    /

    返回文章
    返回