地应力对煤层深孔聚能爆破致裂增透的作用

Effect of in-situ stress on the cracking and permeability enhancement in coal seams by deep-hole cumulative blasting

  • 摘要: 针对地应力对煤层深孔聚能爆破致裂增透问题,在分析钻孔围岩应力场、爆生裂隙扩展及动态卸载效应的基础上,对不同地应力条件下聚能爆破作用过程及裂隙发育特征进行了数值模拟,并通过在不同埋深下的聚能爆破现场试验,探讨了地应力对煤层深孔聚能爆破致裂增透的作用。结果表明:在高地应力煤层进行深孔聚能爆破时,地应力在煤层深孔聚能爆破裂隙扩展不同阶段的作用存在较大区别,在未进行聚能爆破时,钻孔围岩应力状态及形变特征由钻孔形态以及地应力共同决定。在聚能爆破作用初始阶段,由于聚能爆破对围岩产生的冲击作用明显强于地应力,因此爆生裂隙在初期的扩展方向主要由聚能装药结构控制,沿聚能槽开口方向形成定向裂隙;随着裂隙向四周扩展,爆破作用逐渐减弱,地应力作用逐渐显现,钻孔围岩在地应力作用下产生切向压应力,限制了爆破径向裂隙扩展。同时,与主应力方向不同的煤体裂隙在较强的剪应力作用下逐渐沿最大主应力方向偏转。当爆破作用产生的等效动态应力无法继续使煤体进一步压缩时,钻孔围岩内积聚的弹性应变能开始朝爆破中心方向释放,形成新的裂隙。此外,不同方向上的裂隙扩展范围受侧压系数控制,当垂直主应力一定时,随着侧压系数增大,最小主应力方向的裂隙范围进一步减小。

     

    Abstract: With the gradual development of coal mining to deeper levels, the in-situ stress of coal seams shows an increasing trend, resulting in a gradual decrease in permeability, and the stress state of the coal and rock mass and the properties of the surrounding rock also change. The mechanical properties and mechanical parameters of coal and rock mass greatly differ between depths, which influences the cracking and permeability enhancement effect of coal seam deep-hole cumulative blasting. Aiming at the problem of the increasing permeability of coal seams by deep-hole cumulative blasting under in-situ stress, on the basis of an analysis of the stress field of the surrounding rock and the stress of the blasting crack surface, the process of cumulative blasting and crack development characteristics under different confining pressures were numerically simulated. Through field tests of cumulative blasting under different buried depths, the influence of in-situ stress on the cracking and permeability enhancement effect of coal seam deep-hole cumulative blasting was discussed. The results show that the role of in-situ stress differs greatly between the stages of radial crack expansion of coal seam deep-hole cumulative blasting. Before blasting, the stress state and deformation characteristics of the borehole surrounding rock are determined by borehole shape and in-situ stress. In the initial stage of cumulative blasting, the impact of cumulative blasting on the surrounding rock is obviously stronger than in-situ stress. Therefore, the expansion direction of blasting cracks in the initial stage is mainly determined by the cumulative structure, and directional cracks are formed along the opening direction of the cumulative charge groove. With the crack extension, the blasting effect is gradually weakened, and the in-situ stress is dominant. The surrounding rock of the borehole produces tangential compressive stress under the in-situ stress, which limits the radial crack expansion of blasting. Meanwhile, the coal cracks that are not collinear with the principal stress gradually deflect toward the direction of the maximum principal stress under the action of strong shear stress. When the equivalent dynamic stress produced by blasting cannot continue to compress the coal, the elastic strain energy accumulated in the surrounding rock of the borehole begins to release toward the blasting center, causing the coal to crack and produce new cracks. In addition, the crack expansion range in different directions is controlled by the lateral pressure coefficient. When the vertical principal stress is constant, the crack range toward minimum principal stress further decreases with increasing lateral pressure coefficient.

     

/

返回文章
返回