MENG Qing-bo, YIN Yi-xin, QIAO Gui-ling. PID controller parameters identification based on the fastest model of inertial feature systems[J]. Chinese Journal of Engineering, 2010, 32(10): 1366-1371. DOI: 10.13374/j.issn1001-053x.2010.10.024
Citation: MENG Qing-bo, YIN Yi-xin, QIAO Gui-ling. PID controller parameters identification based on the fastest model of inertial feature systems[J]. Chinese Journal of Engineering, 2010, 32(10): 1366-1371. DOI: 10.13374/j.issn1001-053x.2010.10.024

PID controller parameters identification based on the fastest model of inertial feature systems

More Information
  • Received Date: November 08, 2009
  • Available Online: August 09, 2021
  • An algorithm of PID controller parameters identification based on the fastest model was presented to tune PID controller parameters for an inertial feature system. With input and output data of the inertial feature system, this method identifies the first-order characteristic system by the least square method (LSM) firstly, then identifies the second-order fastest model of the inertial feature system according to the demands of the first-order characteristic system, control signal, the stable and dynamic properties of the inertial feature system, and then the PID controller parameters were calculated synchronously. Simulation results show that the algorithm makes the PID controller have the characteristic of the fastest response and provides an effective method for calculating the PID controller parameters.
  • Related Articles

    [1]ZHAO Xi, JU Yang, ZHENG Ze-min. Multiple parameter measurement of mixed-mode stress intensity factors using the photoelastic method[J]. Chinese Journal of Engineering, 2017, 39(8): 1288-1294. DOI: 10.13374/j.issn2095-9389.2017.08.020
    [2]ZHAO Qiang-qiang, HOU Bao-lin. Parameter identification of a shell transfer arm using FDA and optimized ELM[J]. Chinese Journal of Engineering, 2017, 39(4): 611-618. DOI: 10.13374/j.issn2095-9389.2017.04.017
    [3]CHEN Zhang-hua, CHEN Lei, JI Hong-guang. Geo-stress field fitting based on the partial least square method[J]. Chinese Journal of Engineering, 2013, 35(1): 1-7. DOI: 10.13374/j.issn1001-053x.2013.01.001
    [4]ZHU Qiao, CHENG Han-qing, YIN Yi-xin, CHEN Xian-zhong. Estimating the burden surface profile of a blast furnace based on multi-radar measurement and least squares approximations[J]. Chinese Journal of Engineering, 2012, 34(9): 1061-1064. DOI: 10.13374/j.issn1001-053x.2012.09.017
    [5]YAO Lin, YANG Jianhong, XU Jinwu, WANG Zhi. Quality monitoring method of strip hot-dip galvanizing based on partial least squares regression[J]. Chinese Journal of Engineering, 2007, 29(6): 627-631. DOI: 10.13374/j.issn1001-053x.2007.06.040
    [6]RAN Zhengyun, LI Huade, CHEN Shujin. Torque ripple minimization in direct torque control of induction motors[J]. Chinese Journal of Engineering, 2006, 28(10): 985-988. DOI: 10.13374/j.issn1001-053x.2006.10.038
    [7]GUO Hui, LIU Heping, WANG Ling. Kernel partial least squares based on least squares support vector machine primal-dual optimization problem[J]. Chinese Journal of Engineering, 2006, 28(8): 790-793. DOI: 10.13374/j.issn1001-053x.2006.08.019
    [8]SUN Kewen, HE Anrui, YANG Quan, ZHANG Qingdong, ZHAO Lin, GUO Xiaobo. Compensating Tactics of Flatness Control for Hot Strip Mills[J]. Chinese Journal of Engineering, 2004, 26(5): 545-547,559. DOI: 10.13374/j.issn1001-053x.2004.05.022
    [9]Chen Lizhou, He Xiaofeng. An Optimization Method of Stochastic Variable to Solve Uncertain Models in Engineering Design[J]. Chinese Journal of Engineering, 1991, 13(5): 452-460. DOI: 10.13374/j.issn1001-053x.1991.05.009
    [10]Luo Ming, Zhu Xiaolu. The Least-Square Collocation Method Used in Shell-Bending Problems[J]. Chinese Journal of Engineering, 1987, 9(4): 81-89. DOI: 10.13374/j.issn1001-053x.1987.04.012

Catalog

    Article Metrics

    Article views (292) PDF downloads (12) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return