LI Shi-qi, LI Jin, GAO Jin-tao, GU Lin, HOU Na-na, CHEN Dai-ming, ZHAO Chuan. Experimental study on reduction of ultra-fine hematite powder at non-molten state[J]. Chinese Journal of Engineering, 2010, 32(11): 1412-1417. DOI: 10.13374/j.issn1001-053x.2010.11.007
Citation: LI Shi-qi, LI Jin, GAO Jin-tao, GU Lin, HOU Na-na, CHEN Dai-ming, ZHAO Chuan. Experimental study on reduction of ultra-fine hematite powder at non-molten state[J]. Chinese Journal of Engineering, 2010, 32(11): 1412-1417. DOI: 10.13374/j.issn1001-053x.2010.11.007

Experimental study on reduction of ultra-fine hematite powder at non-molten state

  • The reduction degrees of ultra-fine hematite powder(the average particle size is 2μm) and conventional hematite powder(the range of particle size is 0.18 to 0.154mm) in non-molten process were studied.Taking the reduction degree of hematite powder as a target and according to the transformed L16(215) orthogonal table,a series of 4×23 times experiments were arranged to eliminate the interference of reduction atmosphere,reduction temperature and reduction time.The results show that ultra-fine hematite powder can be reduced from Fe2O3 to Fe at different degrees.Compared with conventional particle size hematite powder,ultra-fine hematite powder has a higher reduction degree,and the reduction temperature required to access the same reduction degree lowers about 365 ℃ under the condition of 650 to 850 ℃ and pure H2 or 100% CO atmosphere.There is no correlation among these factors,the quantitative impact of them can be separately estimated,and this provides a basis for establishing an equation of linear regression for each of them.After reduction at non-molten state,the particle size distribution of hematite powder indicates that inter-particle sintering does not occur and the reduction product is still powdery.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return