Fluid flow and inclusion behavior in the nozzle with a rotating magnetic field during continuous casting
-
-
Abstract
A numerical simulation method was applied to investigate the fluid flow as well as the inclusion collision and growth behavior in a swirling flow nozzle induced by a rotating magnetic field during continuous casting.Numerical results indicate that the divergent angle at the submerged entry nozzle(SEN) outlet agrees well with the experimental values of low melting point alloys.The rotating magnetic field has positive and negative effects on the deposition rate of inclusions on the SEN sidewall.On one hand,the turbulence flow near the SEN sidewall enhanced by the rotating magnetic field increases the deposition rate of inclusions on the sidewall;on the other hand,inclusions near the SEN sidewall have a tendency to move towards the SEN center under the rotating magnetic field,which decreases the deposition rate of inclusions on the SEN sidewall.Due to these two paradoxical factors,there is an optimum magnetic induction intensity to minimize the deposition rate of inclusions on the SEN sidewall and the clogging phenomenon can be weakened.
-
-