XI Xiao-jun, LAI Chao-bin, LI Jing-she, WANG Zhi-gang, SUN Le-fei, CHEN Ying-jun. Effect of Y-base rare earth on the microstructure and impact toughness of E36 steel plate[J]. Chinese Journal of Engineering, 2017, 39(2): 244-250. DOI: 10.13374/j.issn2095-9389.2017.02.012
Citation: XI Xiao-jun, LAI Chao-bin, LI Jing-she, WANG Zhi-gang, SUN Le-fei, CHEN Ying-jun. Effect of Y-base rare earth on the microstructure and impact toughness of E36 steel plate[J]. Chinese Journal of Engineering, 2017, 39(2): 244-250. DOI: 10.13374/j.issn2095-9389.2017.02.012

Effect of Y-base rare earth on the microstructure and impact toughness of E36 steel plate

More Information
  • Received Date: April 19, 2016
  • The effect of Y-base rare earth on the inclusions modification, microstructure and impact toughness of E36 steel was investigated by using scanning electron microscopy and energy spectrum analysis. The results indicate that Y-base rare earth improves the microstructure and reduces the interlamellar spacing and content of pearlite. The typical cleavage fracture of E36 steel is quasi-cleavage and dimple fracture when adding Y-base rare earth. Fine and spherical rare earth inclusions are the main reason for the fracture transformation. The impact toughness of E36 steel is improved obviously by Y-base rare earth, especially at the low temperature. In comparison with E36 steel without Y-base rare earth, the longitudinal impact energy of E36 steel containing Y-base rare earth is increased by 33.5%, and the transverse impact energy is increased by 113.7% at -60℃. Moreover, the difference of longitudinal and transverse impact toughness is decreased by Y-base rare earth significantly. To E36 steel without Y-base rare earth, the proportion of longitudinal and transverse impact values is greater than 1.70 and it reaches 2.77 at -60℃. And the proportion of longitudinal and transverse impact values is 1.51-1.73 for E36 steel plate containing Y-base rare earth.
  • [2]
    Wilson W G, Kay D A R, Vahed A. The use of thermodynamics and phase equilibriums to predict the behavior of the rare earth elements in steel. JOM, 1974, 26(5):14
    [3]
    Luyckx L, Bell J R, McLean A, et al.Sulfide shape control in high strength low alloy steels. Metall Mater Trans B, 1970, 1(12):3341
    [4]
    Alan D, Kay R. High temperature thermodynamics and applications of rare earth oxides and sulphides in ferrous metallurgy.Mineral Processing and Extractive Metallurgy Review:An International Journal, 1992, 10(1):307
    [5]
    Shi L Q, Chen J Z,Northwood D O. Inclusion control in a 16 Mn steel using a combined rare earth and calcium treatment. J Mater Eng, 1991, 13(4):273
    [6]
    Liu H L, Liu C J, Jiang M F. Effect of rare earths on impact toughness of a low-carbon steel.Mater Des, 2012, 33:306
    [7]
    Lan J, He J J, Ding W J, et al. Effect of rare earth metals on the microstructure and impact toughness of a cast 0.4C-5Cr-1.2-Mo-1.0Vsteel. ISIJ Int, 2000, 40(12):1275
    [9]
    Liu X, Liang J L. Effect of rare earth metals on microstructure and impact property of duplex stainless steel.Adv Mater Res, 2013, 662:424
    [10]
    Liu X, Wang L M. Effect of rare earth metals on inclusions and impact property of 2205 duplex stainless steel.Adv Mater Res, 2012, 472-475:411
    [14]
    Li C L, Wang Y S, Chen J J, et al. Effect of rare earth on structure and mechanical properties of clean BNbRE steel.J Rare Earths, 2005, 23(4):470
    [15]
    Liu C J, Huang Y H, Jiang M F. Effects and mechanisms of RE on impact toughness and fracture toughness of clean heavy rail steel.J Iron Steel Res Int, 2011, 18(3):52
    [23]
    Kwon S K, Park J S, Park J H. Influence of refractory steel interfacial reaction on the formation behavior of inclusions in Ce-containing stainless steel. ISIJ Int, 2015, 55(12):2589
  • Cited by

    Periodical cited type(16)

    1. 胡煜,郑晓楠,赖朝彬,邓庚凤. 掺杂氧化钇和富镧钐渣对连铸水口MgO-C耐火材料性能的影响. 江西冶金. 2024(01): 58-64 .
    2. 樊轩宇,于彦冲,郑安民,薛高红,张金玲,王社斌. Ce对于20MnTiB冷镦钢夹杂物和力学性能的影响. 工程科学学报. 2024(11): 1989-1999 . 本站查看
    3. 陈基权,董瑞峰,于宛鹭,杨雄,张炜哲. 稀土元素对低合金钢耐腐蚀性能影响的研究现状. 江西冶金. 2023(02): 106-113 .
    4. 王红莉,奉亮,樊轩宇,于彦冲. 稀土对L360管线钢低温冲击性能的影响. 金属热处理. 2023(05): 116-121 .
    5. 于彦冲,康健,欧国洁,穆林,王社斌. 稀土Ce对SUS444铁素体不锈钢夹杂物及力学性能的影响. 热加工工艺. 2023(13): 67-71 .
    6. 罗迪强,余音宏,张真铭,冯小明,刘敏,赖朝彬. 钇基稀土对高强船板钢夹杂物及低温冲击性能的影响. 金属热处理. 2022(03): 142-146 .
    7. 付瑜,罗迪强,高洁,刘永刚,赖朝彬. 稀土轴承钢的研究现状及展望. 江西冶金. 2022(02): 6-12 .
    8. 康健,于彦冲,刘林刚,王社斌,陈伟,文玉兵. 稀土对HRB500E抗震钢筋夹杂物及冲击韧性的影响. 中国稀土学报. 2021(04): 608-615 .
    9. 宿成,冯光宏,智建国,吴伟,王少炳. 稀土对耐磨板NM400低温冲击韧性的影响. 钢铁研究学报. 2021(12): 1289-1295 .
    10. 耿文远,高平,王凡,张鸣一,田迎春. 混合稀土La-Ce对一种抗冲击防护钢组织与冲击性能的影响. 稀土. 2020(02): 105-111 .
    11. 温禄,赖朝彬,罗迪强,王学林,孙乐飞,操瑞宏. 钇基稀土钢中间包水口结瘤机理研究. 江西冶金. 2019(01): 10-14+33 .
    12. 李健,佟石,杨洋,周丹,柴锋,罗小兵,黄宜成. 船舶及海洋工程用耐蚀E36钢板的性能分析. 鞍钢技术. 2019(03): 26-31 .
    13. 常立忠,高岗,郑福舟,施晓芳. 稀土-镁复合处理对GCr15轴承钢中夹杂物的影响. 工程科学学报. 2019(06): 763-771 . 本站查看
    14. 徐周,王德永,陈开来,屈天鹏,田俊. 微镁处理对车轮钢组织与性能的调控作用. 钢铁研究学报. 2018(08): 633-641 .
    15. 蔡茜娜,汪志刚,谢飞鸣,李红卫,刘畅,赖朝彬. 钇基稀土对51CrV4弹簧钢冲击韧性的影响. 有色金属科学与工程. 2018(04): 97-101 .
    16. 冯路路,卢正红,杨红梅. Q500qE钢冲击功不合格原因分析与改进措施. 热加工工艺. 2017(23): 259-261 .

    Other cited types(14)

Catalog

    Article Metrics

    Article views (846) PDF downloads (86) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return