Citation: | CHENG Yuan-peng, BAI Yu, LI Zi-li, LIU Jian-guo. Corrosion characteristics of X65 steel in CO2/oil/water environment of gathering pipeline[J]. Chinese Journal of Engineering, 2018, 40(5): 594-604. DOI: 10.13374/j.issn2095-9389.2018.05.010 |
[1] |
Yaro A S, Abdul-Khalik K R, Khadom A A. Effect of CO2 corrosion behavior of mild steel in oilfield produced water. J Loss Prev Process Ind, 2015, 38:24
|
[2] |
Xu D, Huang W, Ruschau G, et al. Laboratory investigation of MIC threat due to hydrotest using untreated seawater and subsequent exposure to pipeline fluids with and without SRB spiking.Eng Failure Anal, 2013, 28:149
|
[3] |
El-Lateef H M A, Abbasov V M, Aliyeva L I, et al. Corrosion protection of steel pipelines against CO2 corrosion-a review. Chem J, 2012, 2(2):52
|
[4] |
Nesic S. Effects of multiphase flow on internal CO2 corrosion of mild steel pipelines. Energy Fuels, 2012, 26(7):4098
|
[5] |
Zhang G A, Cheng Y F. Localized corrosion of carbon steel in a CO2-saturated oilfield formation water. Electrochim Acta, 2011, 56(3):1676
|
[7] |
Zafar M N, Rihan R, Al-Hadhrami L. Evaluation of the corrosion resistance of SA-543 and X65 steels in emulsions containing H2S and CO2 using a novel emulsion flow loop. Corros Sci, 2015, 94:275
|
[8] |
Rihan R, Zafar M N, Al-Hadhrami L. A novel emulsion flow loop for investigating the corrosion of X65 steel in emulsions with H2S/CO2. J Mater Eng Perform, 2016, 25(7):3065
|
[9] |
Zafar M N, Rihan R, Al-Hadhrami L. Effect of H2S and CO2 in oil/water emulsions on the corrosion resistance of SA-543 steel. J Mater Eng Perform, 2015, 24(2):683
|
[10] |
Zhu S D, Fu A Q, Miao J, et al. Corrosion of N80 carbon steel in oil field formation water containing CO2 in the absence and presence of acetic acid. Corros Sci, 2011, 53(10):3156
|
[11] |
Qiu Z C, Xiong C M, Chang Z L, et al. Major corrosion factors in the CO2 and H2S coexistent environment and the relative anti-corrosion method:taking Tazhong I gas field, Tarim Basin, as an example. Pet Explor Dev, 2012, 39(2):256
|
[13] |
Nesic S. Key issues related to modeling of internal corrosion of oil and gas pipelines-a review. Corros Sci, 2007, 49(12):4308
|
[16] |
Cai J Y, Li C, Tang X P, et al. Experimental study of water wetting in oil-water two phase flow-Horizontal flow of model oil.Chem Eng Sci, 2012, 73:334
|
[17] |
Linter B R, Burstein G T. Reactions of pipeline steels in carbon dioxide solution.Corros Sci, 1999, 41(1):117
|
[18] |
Zhang Y C, Gao K W, Schmitt G. Water effect on steel under supercritical CO2 conditions//Corrosion 2011. Houston, 2011:1
|
[20] |
Cheng Y P, Li Z L, Zhao Y L, et al.Effect of main controlling factor on the corrosion behaviour of API X65 pipeline steel in the CO2/oil/water environment. Anti-Corros Methods Mater, 2017, 64(4):371
|
1. |
秦立峰,吴绍伟,程利民,宋洋,袁梦瑶,张思琦,杨雪,胡楠. 温度对X65管线钢在含CO_2/H_2S油田模拟环境中腐蚀行为的影响. 焊管. 2024(08): 24-29 .
![]() | |
2. |
付璇,邢晓凯,李欣泽. 油水混输管道CO_2腐蚀特性研究进展. 化工进展. 2024(10): 5353-5368 .
![]() | |
3. |
师朋飞,邹思佳,吴鹏举,蒲育,胡岐川,赵敏. 塔河油田P110套管CO_2油水环境中的腐蚀影响因素分析. 全面腐蚀控制. 2023(05): 86-89 .
![]() | |
4. |
陶振涛,许茂贤,张卫,梁海宁,周永刚,赵虹. 燃气轮机长期备用下烟道阻力上升原因分析. 动力工程学报. 2023(06): 692-699 .
![]() | |
5. |
马波. 扫描电镜在压力管道检测中应用研究. 中国设备工程. 2023(22): 195-197 .
![]() | |
6. |
王金龙,陈燕,张泽群,李文龙. 瓦形磁极对磁粒研磨加工管件内表面的影响. 表面技术. 2022(03): 158-166 .
![]() | |
7. |
赵起越,范益,范恩点,赵柏杰,黄运华,程学群,李晓刚. 低合金结构钢腐蚀的影响因素及其耐蚀性判据. 工程科学学报. 2021(02): 255-262 .
![]() | |
8. |
丁杰. 原油集输管道在CO_2和H_2S环境下的腐蚀规律研究. 能源化工. 2021(04): 68-71 .
![]() | |
9. |
李长俊,徐倩,贾文龙,安超,李先明. 含水原油输送钢管CO_2腐蚀速率预测机理模型研究进展. 科学技术与工程. 2021(32): 13628-13637 .
![]() | |
10. |
贾巧燕,王贝,王赟,孟凡娟,王清,张雷,姚海元,路民旭,李清平. 油水两相界面处缓蚀剂的作用效果及机理. 工程科学学报. 2020(02): 225-232 .
![]() | |
11. |
贾巧燕,王贝,王赟,张雷,王清,姚海元,李清平,路民旭. X65管线钢在油水两相界面处的CO_2腐蚀行为研究. 中国腐蚀与防护学报. 2020(03): 230-236 .
![]() | |
12. |
谢俊,高长征,单晓琨,李炳辰. CO_2-H_2S对X65钢腐蚀行为研究. 石油规划设计. 2020(04): 13-17 .
![]() |