ZHOU Qian, LIU Juan-hong, WU Ai-xiang, WANG Hong-jiang, FU Shi-feng, GU Yu. Effect and mechanism of synergist on tailings slurry thickening performance[J]. Chinese Journal of Engineering, 2019, 41(11): 1405-1411. DOI: 10.13374/j.issn2095-9389.2019.01.16.002
Citation: ZHOU Qian, LIU Juan-hong, WU Ai-xiang, WANG Hong-jiang, FU Shi-feng, GU Yu. Effect and mechanism of synergist on tailings slurry thickening performance[J]. Chinese Journal of Engineering, 2019, 41(11): 1405-1411. DOI: 10.13374/j.issn2095-9389.2019.01.16.002

Effect and mechanism of synergist on tailings slurry thickening performance

More Information
  • Corresponding author:

    LIU Juan-hong, E-mail: juanhong1966@hotmail.com

  • Received Date: January 15, 2019
  • Available Online: November 13, 2019
  • Published Date: October 31, 2019
  • The mine tailings generated from metallic ore not only occupies a large area of surface resources but also easily causes mud-rock flow and tailings dam failure. Moreover, the existence of a large number of underground voids threatens the safety of underground mining operations and can induce mines earthquake and surface subsidence. The paste filling technology involves thickening the mine tailings into paste and placing the paste in underground voids. The technology has been widely accepted and applied around the world for its advantages in safety, environmental protection, economy, and high efficiency. The dewatering of mine tailings is a prerequisite for the paste filling process. In the paste backfill, after tailings thickening, the concentration increase is limited, the yield stress is increased, and fluidity is reduced with flocculant dosage. The flocculant dosage and thickening synergist work together to further increase unclassified tailings paste concentration and reduce slurry yield stress. The mechanism of the thickening synergist was researched from a microscopic point of view. The results show that the best addition method is to add thickening synergist after tailings settlement with flocculant dosage by settlement and rheological test. The solid mass fraction can be increased by 8.57%‒10.13%, and the yield stress can be reduced by 6.68‒12.85 Pa. The multi-component thickening synergist can not only reduce unit consumption and cost but also improve the compressive strength of the paste backfill material. The compressive strength of paste backfill material with thickening synergist and cement-tailings mass ratio of 1∶12 is 2.5 MPa at the age of 28 d. The difference is less than 20% compared with the compressive strength of the material with cement-tailings mass ratio of 1∶6 and without thickening synergist. By total organic carbon adsorption test and Zeta potential test, the synergist is found to have functions of adsorption and dispersion. It can destroy the flocculation structure and release the contained water, thereby increasing the tailings concentration and improving the fluidity of tailings particles.
  • [1]
    吴爱祥, 杨莹, 程海勇, 等. 中国膏体技术发展现状与趋势. 工程科学学报, 2018, 40(5):517

    Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517
    [2]
    缪协兴, 钱鸣高. 中国煤炭资源绿色开采研究现状与展望. 采矿与安全工程学报, 2009, 26(1):1 doi: 10.3969/j.issn.1673-3363.2009.01.001

    Miao X X, Qian M G. Research on green mining of coal resources in China: current status and future prospects. J Min Saf Eng, 2009, 26(1): 1 doi: 10.3969/j.issn.1673-3363.2009.01.001
    [3]
    王丽红, 鲍爱华, 罗园园. 中国充填技术应用与展望. 矿业研究与开发, 2017, 37(3):1

    Wang L H, Bao A H, Luo Y Y. Development and outlook on the filling method in China. Min Res Dev, 2017, 37(3): 1
    [4]
    常庆粮, 周华强, 柏建彪, 等. 膏体充填开采覆岩稳定性研究与实践. 采矿与安全工程学报, 2011, 28(2):279 doi: 10.3969/j.issn.1673-3363.2011.02.021

    Chang Q L, Zhou H Q, Bai J B, et al. Stability study and practice of overlying strata with paste backfilling. J Min Saf Eng, 2011, 28(2): 279 doi: 10.3969/j.issn.1673-3363.2011.02.021
    [5]
    吴爱祥, 王勇, 王洪江. 膏体充填技术现状及趋势. 金属矿山, 2016(7):1 doi: 10.3969/j.issn.1001-1250.2016.07.001

    Wu A X, Wang Y, Wang H J. Status and prospects of the paste backfill technology. Metal Mine, 2016(7): 1 doi: 10.3969/j.issn.1001-1250.2016.07.001
    [6]
    刘琼, 张希巍. 中国膏体充填技术研究进展概述. 现代矿业, 2016(5):1 doi: 10.3969/j.issn.1674-6082.2016.05.001

    Liu Q, Zhang X W. Overview of the research progress of the paste backfill technology in China. Mod Min, 2016(5): 1 doi: 10.3969/j.issn.1674-6082.2016.05.001
    [7]
    李公成, 王洪江, 吴爱祥, 等. 基于动态沉降压密实验的深锥浓密机关键参数确定. 中国有色金属学报, 2017, 27(8):1693

    Li G C, Wang H J, Wu A X, et al. Key parameters determination of deep cone thickener based on dynamical settling and compaction experiments. Chin J Nonferrous Met, 2017, 27(8): 1693
    [8]
    吴爱祥, 杨莹, 王贻明, 等. 深锥浓密机底流浓度模型及动态压密机理分析. 工程科学学报, 2018, 40(2):152

    Wu A X, Yang Y, Wang Y M, et al. Mathematical modelling of underflow concentration in a deep cone thickener and analysis of the dynamic compaction mechanism. Chin J Eng, 2018, 40(2): 152
    [9]
    王洪江, 王勇, 吴爱祥, 等. 细粒全尾动态压密与静态压密机理. 北京科技大学学报, 2013, 35(5):566

    Wang H J, Wang Y, Wu A X, et al. Dynamic compaction and static compaction mechanism of fine unclassified tailings. J Univ Sci Technol Beijing, 2013, 35(5): 566
    [10]
    吴爱祥, 周靓, 尹升华, 等. 全尾砂絮凝沉降的影响因素. 中国有色金属学报, 2016, 26(2):439

    Wu A X, Zhou J, Yin S H, et al. Influence factors on flocculation sedimentation of unclassified tailings. Chin J Nonferrous Met, 2016, 26(2): 439
    [11]
    焦华喆, 王洪江, 吴爱祥, 等. 全尾砂絮凝沉降规律及其机理. 北京科技大学学报, 2010, 32(6):702

    Jiao H Z, Wang H J, Wu A X, et al. Rule and mechanism of flocculation sedimentation of unclassified tailings. J Univ Sci Technol Beijing, 2010, 32(6): 702
    [12]
    李辉, 王洪江, 吴爱祥, 等. 基于尾砂沉降与流变特性的深锥浓密机压耙分析. 北京科技大学学报, 2013, 35(12):1553

    Li H, Wang H J, Wu A X, et al. Pressure rake analysis of deep cone thickeners based on tailings’ settlement and rheological characteristics. J Univ Sci Technol Beijing, 2013, 35(12): 1553
    [13]
    王勇, 吴爱祥, 王洪江, 等. 絮凝剂用量对尾矿浓密的影响机理. 北京科技大学学报, 2013, 35(11):1419

    Wang Y, Wu A X, Wang H J, et al. Influence mechanism of flocculant dosage on tailings thickening. J Univ Sci Technol Beijing, 2013, 35(11): 1419
    [14]
    王勇, 吴爱祥, 王洪江, 等. 絮凝和稀释对尾矿沉降性能的影响及工程建议. 武汉理工大学学报, 2014, 36(9):114

    Wang Y, Wu A X, Wang H J, et al. Effect of flocculation and dilution on the tailings setting performance and project proposal. J Wuhan Univ Technol, 2014, 36(9): 114
    [15]
    杨柳华, 王洪江, 吴爱祥, 等. 絮凝沉降对全尾砂料浆流变特性的影响. 中南大学学报(自然科学版), 2016, 47(10):3523

    Yang L H, Wang H J, Wu A X, et al. Effect of flocculation settling on rheological characteristics of full tailing slurry. J Cent South Univ Sci Technol, 2016, 47(10): 3523
  • Cited by

    Periodical cited type(8)

    1. 丁维波,王丹影,程磊,阮泽宇,贺军,王石. 含残留APAM全尾砂料浆管输过程粗颗粒尾砂垂向分布特征. 洁净煤技术. 2024(S1): 650-658 .
    2. 王洪江,王小林,张玺,吴爱祥,田志刚,杜向红. 超细全尾砂深锥动态絮凝浓密试验. 工程科学学报. 2022(02): 163-169 . 本站查看
    3. 阮竹恩,吴爱祥,焦华喆,李翠平,李公成,莫逸,王洪江. 我国全尾砂料浆浓密研究进展与发展趋势. 中国有色金属学报. 2022(01): 286-301 .
    4. 刘娟红,周在波. 细粒级金属尾砂的综合利用及在矿山充填中存在的问题和对策. 金属矿山. 2022(07): 240-249 .
    5. 陈格仲,李翠平,阮竹恩,侯贺子. 膏体充填中絮凝条件对絮团结构及固液分离效率的影响. 中国有色金属学报. 2022(10): 3169-3182 .
    6. 李翠平,陈格仲,侯贺子,颜丙恒. 面向膏体充填尾砂浓密的絮团结构研究进展综述. 金属矿山. 2021(01): 14-23 .
    7. Di Zheng,Wei-dong Song,Yu-ye Tan,Shuai Cao,Zi-long Yang,Li-juan Sun. Fractal and microscopic quantitative characterization of unclassified tailings flocs. International Journal of Minerals Metallurgy and Materials. 2021(09): 1429-1439 .
    8. 任建平,焦华喆. 全尾砂半工业环管输送试验与数值模拟研究. 矿业研究与开发. 2020(12): 23-27 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (1785) PDF downloads (69) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return