Citation: | SONG Bo, ZHAO Wei-na, SHUANG Miao. Analysis of the influence of scour depth on the dynamic response of offshore wind turbine towers under earthquake action[J]. Chinese Journal of Engineering, 2019, 41(10): 1351-1359. DOI: 10.13374/j.issn2095-9389.2019.01.20.001 |
The operational environment of offshore wind turbine towers is complex, and the harsh service environment makes them more vulnerable to damage under conditions of complex stress such as sea water scouring. The scouring pit has a great influence on the vibration of wind turbine towers. It is of great importance to study the dynamic response to earthquakes of wind turbine towers under scouring depths. The research object of this study was a wind turbine tower at a wind farm in Jiangsu Province, which had a seven-degree seismic fortification in the area. Based on finite element simulation, on-site monitoring and a shaking table test of the offshore wind tower, and considering pile-soil interaction in a refined model, variation in the natural vibration period of the structure under different scouring depths and the influence of different scouring depths on the dynamic response of the structure under seismic excitation were studied. On-site monitoring results show that the #6 wind turbine structure is seriously eroded by sea water, and the vibration amplitude is clear compared with the #15 wind turbine built in the same period. These aspects indicate that the influence of scouring depth on the structure could not be ignored. Analysis of numerical simulation show that scouring depth has a great influence on the high-order mode of the structure, which lengthen the natural vibration period of the structure by a maximum of 33%. On account of scouring, constraints of the soil layer on the highly flexible structure were weakened, and the structure produced considerable vibration, which could lead to damage of structures such as wind towers. Results also indicate that when encountering a seven-degree rare earthquake, power generation should immediately be stopped. The variation curves of the shaking table test and the numerical simulation results were more uniform, and the trend coincided well, which fully verified the accuracy of the numerical simulation.
[1] |
薛九天, 王伟, 杨敏. 海水冲刷效应对海上风机桩基承载性能的影响分析. 建筑科学, 2012, 28(增刊1): 84 https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX2012S1023.htm
Xue J T, Wang W, Yang M. Analysis of scour effect on bearing performance of offshore wind turbine pile foundation. Build Sci, 2012, 28(Suppl 1): 84 https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX2012S1023.htm
|
[2] |
Hansen E A, Nielsen A W, Simonsen H J, et al. Scour protection around offshore wind turbine foundations, full-scale measurements//Scientific Proceedings of the European Wind Energy Conference. Milan: 2007
|
[3] |
严根华, 古华, 陆忠民, 等. 基础冲刷对海上风电场塔架支撑系统动力特性的影响分析. 中国工程科学, 2011, 13(1): 69 doi: 10.3969/j.issn.1009-1742.2011.01.010
Yan G H, Gu H, Lu Z M, et al. The influence analysis of foundation scouring on dynamic characteristics of the tower supporting system of offshore wind farm. Eng Sci, 2011, 13(1): 69 doi: 10.3969/j.issn.1009-1742.2011.01.010
|
[4] |
张冬冬, 程晔, 商红磊, 等. 冲刷引起的土体变化对海上风电结构自振频率的影响研究. 特种结构, 2017, 34(2): 8 https://www.cnki.com.cn/Article/CJFDTOTAL-TZJG201702003.htm
Zhang D D, Cheng Y, Shang H L, et al. Effect of scour on nature frequencies of offshore wing turbine structures. Spec Struct, 2017, 34(2): 8 https://www.cnki.com.cn/Article/CJFDTOTAL-TZJG201702003.htm
|
[5] |
田树刚, 陈清军. 考虑流固耦合的近海风电支撑体系自振特性分析. 力学季刊, 2014, 35(3): 473 https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201403012.htm
Tian S G, Chen Q J. Analysis of dynamic characteristics of offshore wind power foundation with consideration of fluid-structure interaction. Chin Q Mech, 2014, 35(3): 473 https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201403012.htm
|
[6] |
李凯文, 宋波, 黄帅. 考虑流固耦合效应的海上单桩式风电塔动力响应研究. 建筑结构学报, 2014, 35(4): 318 https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201404041.htm
Li K W, Song B, Huang S. Dynamic response analysis of offshore wind tower founded on monopole considering FSI. J Build Struct, 2014, 35(4): 318 https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201404041.htm
|
[7] |
Kim D H, Lee S G, Lee I K. Seismic fragility analysis of 5 MW offshore wind turbine. Renewable Energy, 2014, 65: 250 doi: 10.1016/j.renene.2013.09.023
|
[8] |
佐野健彦, 石原孟. 非線形FEM解析に基づく風車無筋ペデスタルの耐力評価式の提案. 構造工学論文集, 2014, 60: 134
Takehiko S, Takeshi I. Design formulae on concrete capacity of wind turbine pedestal based on the non-linear FEM analysis. J Struct Eng, 2014. 60: 134
|
[9] |
何泓男. 冲刷作用下桥梁桩基承载性能演化研究[学位论文]. 南京: 东南大学, 2015
He H N. The Evolutional Study on Bearing Performance of Bridge Pile Foundation Under Scour Condition [Dissertation]. Nanjing: Southeast University, 2015
|
[10] |
朱伟强. 海上风机冲刷计算方法及防护措施. 电力勘测设计, 2016(增刊2): 35 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKC2016S2010.htm
Zhu W Q. Calculation method and safeguard measurement of wind turbine scoured on the sea. Electr Power Surv Des, 2016(Suppl 2): 35 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKC2016S2010.htm
|
[11] |
胡丹, 李芬, 张开银. 冲刷作用下单桩水平承载特性试验研究及数值模拟. 水利学报, 2015, 46(增刊1): 263 https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2015S1049.htm
Hu D, Li F, Zhang K Y. Experment on the lateral load capacity of single piles under scour conditions. J Hydraul Eng, 2015, 46(Suppl 1): 263 https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2015S1049.htm
|
[12] |
杨少磊, 马宏旺. 考虑冲刷情况下海上风电单桩基础优化设计研究. 海洋技术学报, 2018, 37(1): 74 https://www.cnki.com.cn/Article/CJFDTOTAL-HYJS201801013.htm
Yang S L, Ma H W. Study on the optimum geometry of offshore wind turbine monopiles unprotected against scour. J Ocean Technol, 2018, 37(1): 74 https://www.cnki.com.cn/Article/CJFDTOTAL-HYJS201801013.htm
|
[13] |
王志丰. 考虑气候变化背景下基础冲刷对桥梁抗震性能的影响[学位论文]. 北京: 北京交通大学, 2012
Wang Z F. The Influence of Foundation Scouring on the Seismic Performance of a Bridge Under the Background of Climate Change [Dissertation]. Beijing: Beijing Jiaotong University, 2012
|
[14] |
Whitehouse R J, Harris J M, Sutherland J, et al. The nature of scour development and scour protection at offshore windfarm foundations. Mar Pollut Bull, 2011, 62(1): 73 doi: 10.1016/j.marpolbul.2010.09.007
|
[15] |
宋波, 李吉人, 王海龙, 等. 考虑潮位及动水压力影响的在役海上风电塔地震响应分析. 建筑科学与工程学报, 2015, 32(2): 35 doi: 10.3969/j.issn.1673-2049.2015.02.004
Song B, Li J R, Wang H L, et al. Earthquake response analysis of in-service offshore wind towers considering effects of tide level and hydrodynamic pressure. J Archit Civil Eng, 2015, 32(2): 35 doi: 10.3969/j.issn.1673-2049.2015.02.004
|
[16] |
日本道路协会. 道路桥示方书V耐震设计篇. 东京: 日本丸善出版社, 1995
Japan Road Association. Guide to Road Bridge V Seismic Design. Tokyo: Japan Maru Shan Publishing House, 1995
|
[17] |
韩小雷, 谢灿东, 季静, 等. 长周期结构弹塑性时程分析的地震波选取. 土木工程学报, 2016, 49(6): 46 https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201606005.htm
Han X L, Xie C D, Ji J, et al. Ground motion selection for elasto-plastic time-history analysis of long-period structure. China Civil Eng J, 2016, 49(6): 46 https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201606005.htm
|
1. |
刘兵,陶安,郝俊飞,杨敏,任绅铖. 基于弹簧——阻尼理论的海上变电站动力特性研究. 海洋工程. 2024(02): 93-104 .
![]() | |
2. |
王仁刚,朱成浩,孙元,刘红军,付亦鹏,陈达. 波流作用下三脚架基础周围海床冲刷试验研究. 海洋湖沼通报. 2024(03): 1-11 .
![]() | |
3. |
张鹏,张家望,崔春义,李静波. 考虑冲刷深度影响的海上风力机减震控制研究. 振动与冲击. 2024(16): 136-145 .
![]() | |
4. |
班鑫磊,廖望,徐康乾. 地震响应下海上升压站平台模态参数识别. 船舶工程. 2024(S1): 35-40 .
![]() | |
5. |
孙艳国,许成顺,杜修力,王丕光,席仁强,孙毅龙. 海上风电桩–筒复合基础承载性能研究. 工程科学学报. 2023(03): 489-498 .
![]() | |
6. |
黄琳. 海上风电机组支撑结构状态评估及热点识别技术. 中国水运(下半月). 2023(03): 38-41 .
![]() | |
7. |
周茂强,李鹏,罗先启,师昀巍,张海涛. 固化土在海上风电基础冲刷防护工程中的应用. 水道港口. 2023(02): 264-269 .
![]() | |
8. |
王鑫,林鹏,黄浩东,袁兢,邱旭,刘鑫. 海上风电基础冲刷动力特性及在线监测. 清华大学学报(自然科学版). 2023(07): 1087-1094 .
![]() | |
9. |
綦元敏,闫康昊,黄丹,姜冬菊. 考虑冲刷的单桩式海上风力机动力响应研究. 热能动力工程. 2023(08): 125-132 .
![]() | |
10. |
李红瑞. 浅谈水尺计重的相对误差. 中国水运. 2023(06): 41-43 .
![]() | |
11. |
于通顺,唐俊辉,刘梅梅,徐昱,张舒博. 局部冲刷对复合筒基风电结构体系动力响应影响. 太阳能学报. 2022(04): 359-365 .
![]() | |
12. |
孙艳国,许成顺,杜修力,王丕光,席仁强,孙毅龙. 海上风电复合基础承载性能对比研究. 工程科学学报. 2022(06): 1098-1107 .
![]() | |
13. |
李芬,王屹之,洪子博,胡丹. 考虑冲刷深度的海上风机地震易损性研究. 水利水运工程学报. 2022(04): 123-130 .
![]() | |
14. |
孔德森,刘一,邓美旭,李亚洲. 非均质土中海上风电单桩基础动力响应特性. 工程科学学报. 2021(05): 710-719 .
![]() | |
15. |
彭潜. 海上风电结构健康监测工程实践与分析. 船舶工程. 2021(S1): 81-86 .
![]() |