CHEN Bing, YAN Ji-wei, YIN Zhong-jun, SUN Zhi-hui, XIAO You-peng. Multi-parameter optimization of high-frequency vibrating screen based on DEM[J]. Chinese Journal of Engineering, 2021, 43(6): 852-861. DOI: 10.13374/j.issn2095-9389.2020.04.16.005
Citation: CHEN Bing, YAN Ji-wei, YIN Zhong-jun, SUN Zhi-hui, XIAO You-peng. Multi-parameter optimization of high-frequency vibrating screen based on DEM[J]. Chinese Journal of Engineering, 2021, 43(6): 852-861. DOI: 10.13374/j.issn2095-9389.2020.04.16.005

Multi-parameter optimization of high-frequency vibrating screen based on DEM

More Information
  • Corresponding author:

    CHEN Bing, E-mail: bingchen9803@ustb.edu.cn

  • Received Date: April 15, 2020
  • Available Online: June 30, 2020
  • Published Date: June 24, 2021
  • The screening efficiency and average transport speed of materials are important indicators for measuring the performance of screening machinery. In recent years, few breakthroughs have been made in traditional screening machinery. As high-efficiency vibration machinery, high-frequency vibrating screens have become widely used in recent years, but the operational methods of high-frequency vibrating mesh screens are relatively unique: the screen box is fixed and the screen is vibrated at a high frequency. Despite its wide use, there are relatively few studies about the materials movement law and screening characteristics of high-frequency vibrating screen. In this study, a discrete element method (DEM) was used in a simulation of the screening process of the spherical and nonspherical particle groups, and an experimental study was also conducted. The results show that changes in the screening efficiency in the simulation of spherical and nonspherical particles are consistent with those observed experimentally, but the simulation results for the nonspherical particles were closer to those obtained in the experiments. Orthogonal designs and multiple sets of simulation tests were conducted to analyze the influence of each vibration parameter (vibration frequency, amplitude and mesh inclination) on the particle distribution curve, screening efficiency, and average transport speed of the materials. Multivariate nonlinear fitting was performed on the data using the orthogonal test table, and the relationship between the screening efficiency and the vibration parameters was obtained. Based on this relationship, the optimal vibration parameters were obtained and verified in the simulation. The results obtained in this research provide a theoretical basis for the design of the vibration parameters of the high-frequency vibrating screen, and the experimental and simulation data provide support for the investigation of the screening mechanism of the high-frequency vibration system.
  • [1]
    赵环帅, 王振年. 国内外高频振动筛的现状与发展趋势. 金属矿山, 2009, 44(11):105 doi: 10.3321/j.issn:1001-1250.2009.11.030

    Zhao H S, Wang Z N. Current status and development trend of high frequency vibrating screen at home and abroad. Metal Mine, 2009, 44(11): 105 doi: 10.3321/j.issn:1001-1250.2009.11.030
    [2]
    王新文. 单轴振动筛运动模拟及筛面上颗粒的运动. 煤炭学报, 2013, 38(11):2067

    Wang X W. Simulation of single-shaft vibrating screen and movement of particle on the screen surface. J China Coal Soc, 2013, 38(11): 2067
    [3]
    Fraige F Y, Langston P A, Chen G Z. Distinct element modelling of cubic particle packing and flow. Powder Technol, 2008, 186(3): 224 doi: 10.1016/j.powtec.2007.12.009
    [4]
    郭英训, 李怀勇, 黄建华, 等. 沥青拌和站振动筛分关键因子影响规律研究. 工程机械, 2017, 48(10):13 doi: 10.3969/j.issn.1000-1212.2017.10.003

    Guo Y X, Li H Y, Huang J H, et al. Effects of the key-factors on vibratory screening in asphalt mixing plants. Constr Mach Equip, 2017, 48(10): 13 doi: 10.3969/j.issn.1000-1212.2017.10.003
    [5]
    赵啦啦, 刘初升, 闫俊霞, 等. 颗粒筛分过程的三维离散元法模拟. 煤炭学报, 2010, 35(2):307

    Zhao L L, Liu C S, Yan J X, et al. Numerical simulation of particle screening process based on 3D discrete element method. J China Coal Soc, 2010, 35(2): 307
    [6]
    Li J, Webb C, Pandiella S S, et al. Discrete particle motion on sieves – a numerical study using the DEM simulation. Powder Technol, 2003, 133(1-3): 190 doi: 10.1016/S0032-5910(03)00092-5
    [7]
    Zhao L L, Zhao Y M, Liu C S, et al. Simulation of the screening process on a circularly vibrating screen using 3D-DEM. Min Sci Technol, 2011, 21(5): 677
    [8]
    Cleary P W. The effect of particle shape on simple shear flows. Powder Technol, 2008, 179(3): 144 doi: 10.1016/j.powtec.2007.06.018
    [9]
    刘义伦, 苏家辉, 赵先琼, 等. 基于离散元法的振动筛的筛分效率研究. 东北师大学报, 2018, 50(4):78

    Liu Y L, Su J H, Zhao X Q, et al. The study of vibrating screen efficiency based on discrete element method. J Northeast Norm Univ, 2018, 50(4): 78
    [10]
    王中营, 任宁, 武文斌, 等. 基于离散元法的往复振动筛筛分效果研究. 农机化研究, 2016(1):33 doi: 10.3969/j.issn.1003-188X.2016.01.007

    Wang Z Y, Ren N, Wu W B, et al. Research on screening results of reciprocating vibration screen based on discrete element method. Agric Mech Res, 2016(1): 33 doi: 10.3969/j.issn.1003-188X.2016.01.007
    [11]
    王宏, 李珺, 江海深, 等. 基于三维离散元法的等厚筛虚拟筛分. 北京科技大学学报, 2014, 36(12):1583

    Wang H, Li J, Jiang H S, et al. Virtual screening of a banana screen based on the 3D discrete element method. J Univ Sci Technol Beijing, 2014, 36(12): 1583
    [12]
    Harzanagh A A, Orhan E C, Ergun S L. Discrete element modelling of vibrating screens. Miner Eng, 2018, 121: 107 doi: 10.1016/j.mineng.2018.03.010
    [13]
    Elskamp F, Emden H K, Henning M, et al. Benchmarking of process models for continuous screening based on discrete element simulations. Miner Eng, 2015, 83: 78 doi: 10.1016/j.mineng.2015.08.011
    [14]
    Silva B Be, Cunha E R da, Carvalho R M de, et al. Modeling and simulation of green iron ore pellet classification in a single deck roller screen using the discrete element method. Powder Technol, 2018, 332: 359 doi: 10.1016/j.powtec.2018.04.005
    [15]
    Wang G F, Tong X. Screening efficiency and screen length of a linear vibrating screen using DEM 3D simulation. Min Sci Technol (China), 2011, 21(3): 451 doi: 10.1016/j.mstc.2011.05.026
    [16]
    王娜, 赵俊凯, 李孟红. 振动筛筛分效率的影响因素研究. 粮食加工, 2018, 43(2):59

    Wang N, Zhao J K, Li M H. Study on influence factors of sieving efficiency of vibrating screen. Food Process, 2018, 43(2): 59
    [17]
    Liu C S, Wang H, Zhao Y M, et al. DEM simulation of particle flow on a single deck banana screen. Int J Min Sci Technol, 2013, 23(2): 273 doi: 10.1016/j.ijmst.2013.04.007
    [18]
    Cleary P W, Sinnott M D, Morrison R D. Separation performance of double deck banana screens - Part 1: Flow and separation for different accelerations. Miner Eng, 2009, 22(14): 1218 doi: 10.1016/j.mineng.2009.07.002
    [19]
    张新, 武兵, 牛蔺楷, 等. 基于DEM弛张筛面与颗粒群双向耦合的动态特性. 煤炭学报, 2019, 44(6):l930

    Zhang X, Wu B, Niu L K, et al. Dynamic characteristics of two-way coupling between flip-flow screen and particles based on DEM. J China Coal Soc, 2019, 44(6): l930
    [20]
    Zhu H P, Zhou Z Y, Yang R Y, et al. Discrete particle simulation of particulate systems: a review of major applications and findings. Chem Eng Sci, 2008, 63(23): 5728 doi: 10.1016/j.ces.2008.08.006
    [21]
    Zhu H P, Zhou Y, Yang R Y, et al. Discrete particle simulation of particulate systems: theoretical developments. Chem Eng Sci, 2007, 62(13): 3378 doi: 10.1016/j.ces.2006.12.089
    [22]
    Zhong W Q, Yu A B, Liu X J, et al. DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications. Powder Technol, 2016, 302: 108 doi: 10.1016/j.powtec.2016.07.010
    [23]
    Majid M, Walzel P. Convection and segregation in vertically vibrated granular beds. Powder Technol, 2009, 192(3): 311 doi: 10.1016/j.powtec.2009.01.012
    [24]
    乔金鹏, 段晨龙, 江海深, 等. 变振幅等厚筛6 mm筛分试验研究. 煤炭技术, 2017, 36(3):251

    Qiao J P, Duan C L, Jiang H S, et al. Study on 6 mm screening of thickness screen with variable amplitude. Coal Technol, 2017, 36(3): 251
    [25]
    王翠青, 冉隆河. 影响直线振动筛筛分效果的几个重要参数. 选煤技术, 2006(2):13

    Wang C Q, Ran L H. Some major parameters effecting on performance of linear screen. Coal Pre Technol, 2006(2): 13
  • Related Articles

    [1]CAI Wei, LIU Geng, MA Shang-jun, ZHOU Yong, FU Xiao-jun, ZHANG Jian-xin. Optimization research of planetary roller screw mechanism parameters based on crow search algorithm[J]. Chinese Journal of Engineering, 2023, 45(6): 1013-1022. DOI: 10.13374/j.issn2095-9389.2022.04.12.009
    [2]HOU Gong-yu, XU Zhe-dong, LIU Xin, NIU Xiao-tong, WANG Qing-le. Optimization method improvement for nonlinear constrained single objective system without mathematical models[J]. Chinese Journal of Engineering, 2018, 40(11): 1402-1411. DOI: 10.13374/j.issn2095-9389.2018.11.014
    [3]ZHAO Qiang-qiang, HOU Bao-lin. Parameter identification of a shell transfer arm using FDA and optimized ELM[J]. Chinese Journal of Engineering, 2017, 39(4): 611-618. DOI: 10.13374/j.issn2095-9389.2017.04.017
    [4]LI Ye-lin, MA Fei, GENG Xiao-guang. Optimal design of performance parameters for the double damping system of a hydraulic rock drill[J]. Chinese Journal of Engineering, 2015, 37(9): 1183-1190. DOI: 10.13374/j.issn2095-9389.2015.09.011
    [5]REN Hong-gang, TAN Zhuo-ying, CAI Xue-feng, HUANG Zhen-jing. AHP-Fuzzy optimization of structural parameters in sublevel openstope succedent filling method[J]. Chinese Journal of Engineering, 2010, 32(11): 1383-1387. DOI: 10.13374/j.issn1001-053x.2010.11.002
    [6]QIU Lifang, NAN Tieling, WENG Haishan. Multi-objective optimization for rotation capacity of flexure hinges[J]. Chinese Journal of Engineering, 2008, 30(2): 189-192. DOI: 10.13374/j.issn1001-053x.2008.02.017
    [7]WU Shunchuan, GAO Qian, LIU Fujun. Reinforcement design and parameters optimization for a secondary dynamic pressure tunnel[J]. Chinese Journal of Engineering, 2006, 28(3): 215-218. DOI: 10.13374/j.issn1001-053x.2006.03.003
    [8]WANG Jing, ZHAO Yuanyuan. Optimization of PI Controller Parameters Using Genetic Algorithm[J]. Chinese Journal of Engineering, 2000, 22(1): 93-96. DOI: 10.13374/j.issn1001-053x.2000.01.048
    [9]Bian Zhirui. Optimal Design of Kinematical Parameters for Clay Gun[J]. Chinese Journal of Engineering, 1992, 14(5): 552-556. DOI: 10.13374/j.issn1001-053x.1992.05.010
    [10]Lai Senhua, Huang Cunshao, Tong Guangxu. Optimizing the Operating Parameters for Vibrating Feeders by Means of Electronic Computer[J]. Chinese Journal of Engineering, 1987, 9(S2): 8-16. DOI: 10.13374/j.issn1001-053x.1987.s2.015
  • Cited by

    Periodical cited type(5)

    1. 李玥亭,张振山,王振威. 基于蚁群算法的振动筛参数优化设计. 重庆工商大学学报(自然科学版). 2024(02): 34-41 .
    2. 王雯雯,沈军,王鑫旭. 刨花筛分技术研究现状及进展探讨. 中国人造板. 2024(09): 17-21 .
    3. 冯霏,柴二威,李芳. 弹球式振打装置对振动筛筛分效果影响. 山西焦煤科技. 2023(01): 7-10 .
    4. 李洋波,蔡改贫,阮辽. 对辊破碎机对钨矿石的层压破碎特性研究. 工程设计学报. 2023(02): 212-225 .
    8. 陈兵,刘涵,任江,王彪,尹忠俊,肖有鹏. 物料冲击对椭圆振动筛筛分性能的动态影响. 振动.测试与诊断. 2024(05): 907-915+1036-1037 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (1955) PDF downloads (89) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return