DAI Hui-xin, TANG Dong-dong, WANG Fei-wang, XIE Pei, ZHAO Ming-zhu. Application status of discrete element method in grinding equipment research and parameter optimization[J]. Chinese Journal of Engineering, 2022, 44(3): 319-327. DOI: 10.13374/j.issn2095-9389.2020.11.05.004
Citation: DAI Hui-xin, TANG Dong-dong, WANG Fei-wang, XIE Pei, ZHAO Ming-zhu. Application status of discrete element method in grinding equipment research and parameter optimization[J]. Chinese Journal of Engineering, 2022, 44(3): 319-327. DOI: 10.13374/j.issn2095-9389.2020.11.05.004

Application status of discrete element method in grinding equipment research and parameter optimization

More Information
  • Corresponding author:

    WANG Fei-wang, E-mail: wangfw0310@qq.com

  • Received Date: November 04, 2020
  • Available Online: March 02, 2021
  • Published Date: January 07, 2022
  • Grinding is an important link in the process of mineral processing. This is because whether the useful minerals in the ore can fully dissociate the monomers and the particle size meets the sorting requirements have a decisive effect on the beneficiation index. Over the last two decades, the discrete element method (DEM) has become an important tool for understanding comminution fundamentals and providing theoretical guidance for the design, optimization, and operation of comminution devices. DEM is now widely used in industries where comminution is critical. The application of DEM in simulating fracture, breakage, crushing, milling and equipment wear has become increasingly extensive and complex, resulting in tremendous changes in the understanding of the grinding process. In this article, the application background of DEM in the field of grinding was introduced; the basic principles of two commonly used models in DEM, the Hertz-Mindlin contact model, and the bonding particle model, were explained. Subsequently, the application status of DEM in ball mills, stirring mills and self-mill/semi-automatic mills, and other three types of grinding equipment and parameter optimization research were summarized. Finally, it further pointed out the unique advantages of DEM in the field of grinding and its development direction.
  • [1]
    韩清林, 田秋娟, 田磊. 离散元方法在球磨机中的应用现状. 工程机械文摘, 2011(1):36

    Han Q L, Tian Q J, Tian L. Application status of discrete element method in ball mill. Constr Mach Dig, 2011(1): 36
    [2]
    田秋娟. 基于离散元方法的大型球磨机工作性能研究[学位论文]. 长春: 吉林大学, 2011

    Tian Q J. Study on the Working Performances of Large Tumbling Ball Mill Based on the Discrete Element Method [Dissertation]. Changchun: Jilin University, 2011
    [3]
    桑艳伟, 张国旺, 肖骁, 等. 离散元法在磨矿设备中的应用现状. 矿冶工程, 2016, 36(增刊): 242

    Sang Y W, Zhang G W, Xiao X, et al. Application status of discrete element method in grinding equipment. Min Metall Eng, 2016, 36(suppl): 242
    [4]
    高强. 基于离散元法的搅拌球磨机磨矿分析与研究[学位论文]. 昆明: 昆明理工大学, 2016

    Gao Q. Analysis Grinding of Horizontal Stirred Mill Based on Distinct Element Method [Dissertation]. Kunming: Kunming University of Science and Technology, 2016
    [5]
    田瑞霞, 焦红光, 白璟宇. 离散元法在矿物加工工程中的应用现状. 选煤技术, 2012(1):72 doi: 10.3969/j.issn.1001-3571.2012.01.020

    Tian R X, Jiao H G, Bai J Y. An introduction of distinct element method and its application in mineral processing engineering. Coal Prep Technol, 2012(1): 72 doi: 10.3969/j.issn.1001-3571.2012.01.020
    [6]
    Zhu H P, Zhou Z Y, Yang R Y, et al. Discrete particle simulation of particulate systems: Theoretical developments. Chem Eng Sci, 2007, 62(13): 3378 doi: 10.1016/j.ces.2006.12.089
    [7]
    Weerasekara N S, Powell M S, Cleary P W, et al. The contribution of DEM to the science of comminution. Powder Technol, 2013, 248: 3 doi: 10.1016/j.powtec.2013.05.032
    [8]
    方自强, 吴洪亮, 周享楠. 球磨机DEM仿真中接触模型的精准性分析. 机械, 2019, 46(2):17

    Fang Z Q, Wu H L, Zhou X N. Analysis for the mechanical characteristics of contact models in the DEM simulation of a ball mill. Machinery, 2019, 46(2): 17
    [9]
    Tsuji Y, Tanaka T, Ishida T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol, 1992, 71(3): 239 doi: 10.1016/0032-5910(92)88030-L
    [10]
    Mindlin R D. Compliance of elastic bodies in contact. J Appl Mech, 1949, 16(3): 259 doi: 10.1115/1.4009973
    [11]
    Cleary P W. Predicting charge motion, power draw, segregation and wear in ball mills using discrete element methods. Miner Eng, 1998, 11(11): 1061 doi: 10.1016/S0892-6875(98)00093-4
    [12]
    Di Renzo A, di Maio F P. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem Eng Sci, 2004, 59(3): 525 doi: 10.1016/j.ces.2003.09.037
    [13]
    Potyondy D O, Cundall P A. A bonded-particle model for rock. Int J Rock Mech Min Sci, 2004, 41(8): 1329 doi: 10.1016/j.ijrmms.2004.09.011
    [14]
    Mishra B K, Rajamani R K. The discrete element method for the simulation of ball mills. Appl Math Model, 1992, 16(11): 598 doi: 10.1016/0307-904X(92)90035-2
    [15]
    Mishra B K, Rajamani R K. Simulation of charge motion in ball mills. Part 1: Experimental verifications. Int J Miner Process, 1994, 40(3-4): 171 doi: 10.1016/0301-7516(94)90042-6
    [16]
    Cleary P W. Recent advances in DEM modelling of tumbling mills. Miner Eng, 2001, 14(10): 1295 doi: 10.1016/S0892-6875(01)00145-5
    [17]
    Cleary P W, Sinnott M D, Morrison R D. DEM prediction of particle flows in grinding processes. Int J Numer Meth Fluids, 2008, 58(3): 319 doi: 10.1002/fld.1728
    [18]
    Weerasekara N S, Liu L X, Powell M S. Estimating energy in grinding using DEM modelling. Miner Eng, 2016, 85: 23 doi: 10.1016/j.mineng.2015.10.013
    [19]
    Jiang S Q, Ye Y X, Tan Y Q, et al. Discrete element simulation of particle motion in ball mills based on similarity. Powder Technol, 2018, 335: 91 doi: 10.1016/j.powtec.2018.05.012
    [20]
    Radziszewski P, Tarasiewicz S. Simulation of ball charge and liner wear. Wear, 1993, 169(1): 77 doi: 10.1016/0043-1648(93)90393-Z
    [21]
    Bian X L, Wang G Q, Wang H D, et al. Effect of lifters and mill speed on particle behaviour, torque, and power consumption of a tumbling ball mill: Experimental study and DEM simulation. Miner Eng, 2017, 105: 22 doi: 10.1016/j.mineng.2016.12.014
    [22]
    Peng Y X, Li T Q, Zhu Z C, et al. Discrete element method simulations of load behavior with mono-sized iron ore particles in a ball mill. Adv Mech Eng, 2017, 9(5): 1
    [23]
    Kalala J T, Breetzke M, Moys M H. Study of the influence of liner wear on the load behaviour of an industrial dry tumbling mill using the discrete element method (DEM). Int J Miner Process, 2008, 86(1-4): 33 doi: 10.1016/j.minpro.2007.10.001
    [24]
    Cleary P W, Owen P, Hoyer D I, et al. Prediction of mill liner shape evolution and changing operational performance during the liner life cycle: Case study of a Hicom mill. Int J Numer Meth Eng, 2010, 81(9): 1157 doi: 10.1002/nme.2721
    [25]
    Kiangi K, Potapov A, Moys M. DEM validation of media shape effects on the load behaviour and power in a dry pilot mill. Miner Eng, 2013, 46-47: 52 doi: 10.1016/j.mineng.2013.03.025
    [26]
    姚福善. 大型塔式磨机在金精矿氰化细磨中的应用. 黄金科学技术, 2014, 22(3):82 doi: 10.11872/j.issn.1005-2518.2014.03.082

    Yao F S. Application of large tower mill in cyanide fine grinding of gold concentrate. Gold Sci Technol, 2014, 22(3): 82 doi: 10.11872/j.issn.1005-2518.2014.03.082
    [27]
    Morrison R D, Cleary P W, Sinnott M D. Using DEM to compare the energy efficiency of pilot scale ball and tower mills. Miner Eng, 2009, 22(7-8): 665 doi: 10.1016/j.mineng.2009.01.016
    [28]
    王鑫, 肖正明, 龙稳. 基于离散元法的塔磨机介质运动仿真分析. 矿山机械, 2015, 43(7):74

    Wang X, Xiao Z M, Long W. Simulation and analysis on media movement in tower mill based on DEM. Min Process Equip, 2015, 43(7): 74
    [29]
    Sinnott M D, Cleary P W, Morrison R D. Is media shape important for grinding performance in stirred mills? Miner Eng, 2011, 24(2): 138
    [30]
    Sinnott M, Cleary P W, Morrison R. Analysis of stirred mill performance using DEM simulation: Part 1— Media motion, energy consumption and collisional environment. Miner Eng, 2006, 19(15): 1537 doi: 10.1016/j.mineng.2006.08.012
    [31]
    Cleary P W, Sinnott M, Morrison R. Analysis of stirred mill performance using DEM simulation: Part 2— Coherent flow structures, liner stress and wear, mixing and transport. Miner Eng, 2006, 19(15): 1551 doi: 10.1016/j.mineng.2006.08.013
    [32]
    任廷志, 李卓, 刘长远, 等. 基于离散元法的塔磨机数值模拟分析. 中国粉体技术, 2016, 22(4):88

    Ren T Z, Li Z, Liu C Y, et al. Simulation of tower mill analysis based on discrete element method. China Powder Sci Technol, 2016, 22(4): 88
    [33]
    肖正明, 王鑫, 伍星, 等. 塔磨机运行参数优化匹配的仿真分析与试验研究. 中国机械工程, 2016, 27(4):483 doi: 10.3969/j.issn.1004-132X.2016.04.011

    Xiao Z M, Wang X, Wu X, et al. Simulation analyses and experimental investigation on optimum matching of operating parameters of tower mill. China Mech Eng, 2016, 27(4): 483 doi: 10.3969/j.issn.1004-132X.2016.04.011
    [34]
    Sinnott M, Cleary P W, Morrison R D. Slurry flow in a tower mill. Miner Eng, 2011, 24(2): 152 doi: 10.1016/j.mineng.2010.11.002
    [35]
    Yang R Y, Jayasundara C T, Yu A B, et al. DEM simulation of the flow of grinding media in IsaMill. Miner Eng, 2006, 19(10): 984 doi: 10.1016/j.mineng.2006.05.002
    [36]
    Jayasundara C T, Yang R Y, Yu A B, et al. Discrete particle simulation of particle flow in the IsaMill process. Ind Eng Chem Res, 2006, 45(18): 6349 doi: 10.1021/ie060474s
    [37]
    Jayasundara C T, Yang R Y, Yu A B, et al. Discrete particle simulation of particle flow in IsaMill—Effect of grinding medium properties. Chem Eng J, 2008, 135(1-2): 103 doi: 10.1016/j.cej.2007.04.001
    [38]
    Jayasundara C T, Yang R Y, Yu A B, et al. Effects of disc rotation speed and media loading on particle flow and grinding performance in a horizontal stirred mill. Int J Miner Process, 2010, 96(1-4): 27 doi: 10.1016/j.minpro.2010.07.006
    [39]
    Jayasundara C T, Yang R Y, Yu A B, et al. Prediction of the disc wear in a model IsaMill and its effect on the flow of grinding media. Miner Eng, 2011, 24(14): 1586 doi: 10.1016/j.mineng.2011.08.011
    [40]
    Cleary P W, Sinnott M D, Pereira G G. Computational prediction of performance for a full scale Isamill: Part 1—Media motion and energy utilisation in a dry mill. Miner Eng, 2015, 79: 220 doi: 10.1016/j.mineng.2015.04.005
    [41]
    Cleary P W, Sinnott M D. Computational prediction of performance for a full scale Isamill: Part 2—Wet models of charge and slurry transport. Miner Eng, 2015, 79: 239 doi: 10.1016/j.mineng.2015.04.013
    [42]
    Jayasundara C T, Yang R Y, Guo B Y, et al. Effect of slurry properties on particle motion in IsaMills. Miner Eng, 2009, 22(11): 886 doi: 10.1016/j.mineng.2009.04.009
    [43]
    Cho H, Lee H, Lee Y. Some breakage characteristics of ultra-fine wet grinding with a centrifugal mill. Int J Miner Process, 2006, 78(4): 250 doi: 10.1016/j.minpro.2005.11.005
    [44]
    Bradley A A, Lloyd P J D, Stanton K H. The balancing of a centrifugal mill. J South Afr Inst Min Metall, 1983, 83: 229
    [45]
    Lee H, Cho H, Kwon J. Using the discrete element method to analyze the breakage rate in a centrifugal/vibration mill. Powder Technol, 2010, 198(3): 364 doi: 10.1016/j.powtec.2009.12.001
    [46]
    陈懿. 卧式离心滚磨介质运动分析及数值模拟[学位论文]. 昆明: 昆明理工大学, 2017

    Chen Y. Motion Analysis of Medium and Numerical Simulation of Horizontal Centrifugal Barrel Finishing [Dissertation]. Kunming: Kunming University of Science and Technology, 2017
    [47]
    Khanal M, Morrison R. Discrete element method study of abrasion. Miner Eng, 2008, 21(11): 751 doi: 10.1016/j.mineng.2008.06.008
    [48]
    Antony S J, Kruyt N P. Role of interparticle friction and particle-scale elasticity in the shear-strength mechanism of three-dimensional granular media. Phys Rev E, 2009, 79: art. No. 031308 doi: 10.1103/PhysRevE.79.031308
    [49]
    Khanal M, Jayasundara C T. Role of particle stiffness and inter-particle sliding friction in milling of particles. Particuology, 2014, 16: 54 doi: 10.1016/j.partic.2014.04.003
    [50]
    Cleary P W. Large scale industrial DEM modelling. Eng Comput, 2004, 21(2/3/4): 169 doi: 10.1108/02644400410519730
    [51]
    Cleary P W. Industrial particle flow modelling using discrete element method. Eng Comput, 2009, 26(6): 698 doi: 10.1108/02644400910975487
    [52]
    Cleary P W. The effect of particle shape on simple shear flows. Powder Technol, 2008, 179(3): 144 doi: 10.1016/j.powtec.2007.06.018
    [53]
    Delaney G W, Cleary P W, Morrison R D, et al. Predicting breakage and the evolution of rock size and shape distributions in Ag and SAG mills using DEM. Miner Eng, 2013, 50-51: 132 doi: 10.1016/j.mineng.2013.01.007
    [54]
    Cleary P W, Morrison R D. Comminution mechanisms, particle shape evolution and collision energy partitioning in tumbling mills. Miner Eng, 2016, 86: 75 doi: 10.1016/j.mineng.2015.12.006
    [55]
    Cleary P W, Delaney G W, Sinnott M D, et al. Inclusion of incremental damage breakage of particles and slurry rheology into a particle scale multiphase model of a SAG mill. Miner Eng, 2018, 128: 92 doi: 10.1016/j.mineng.2018.08.026
    [56]
    Cleary P W, Owen P. Effect of particle shape on structure of the charge and nature of energy utilisation in a SAG mill. Miner Eng, 2019, 132: 48 doi: 10.1016/j.mineng.2018.12.006
    [57]
    杜强. 基于离散元的大型半自磨机筒体衬板磨损分析. 矿山机械, 2015, 43(1):62

    Du Q. Wearing analysis of shell liner in large SAG mill based on DEM. Min Process Equip, 2015, 43(1): 62
    [58]
    蔡改贫, 祁步春, 肖贤煌, 等. 半自磨机磨矿效果的数值模拟及实验研究. 河南理工大学学报(自然科学版), 2017, 36(2):89

    Cai G P, Qi B C, Xiao X H, et al. Numerical simulation and experiment research of grinding efficiency of SAG. J Henan Polytech Univ Nat Sci, 2017, 36(2): 89
  • Related Articles

    [1]XU Huai-bing, WANG Ting, ZOU Wen-jie, ZHAO Jian-jun, TAO Le, ZHANG Zhi-jun. Ball mill load status identification method based on the convolutional neural network, optimized support vector machine model, and intelligent grinding media[J]. Chinese Journal of Engineering, 2022, 44(11): 1821-1831. DOI: 10.13374/j.issn2095-9389.2022.03.06.001
    [2]MA Yu-wen, FENG Ya-li, LI Hao-ran. Preparation of calcium oxide from by-product calcium sulfate by solid-state ball milling reaction at ambient temperature[J]. Chinese Journal of Engineering, 2013, 35(3): 347-351. DOI: 10.13374/j.issn1001-053x.2013.03.001
    [3]ZHANG Dazhi, ZHOU Fang, SHENTU Nankai, LI Haibin, MI Chunxia, SHI Yuanhai. TDC-based wrapping roll automatic jump control system for a 1500mm hot strip mill coiler[J]. Chinese Journal of Engineering, 2007, 29(6): 622-626. DOI: 10.13374/j.issn1001-053x.2007.06.039
    [4]YIN Zhongjun, ZHANG Shaojun, LI Zhongfu. Energy transfer laws in a vibrating mill tube[J]. Chinese Journal of Engineering, 2006, 28(5): 471-474. DOI: 10.13374/j.issn1001-053x.2006.05.035
    [5]GUAN Lu, QU Xuanhui, JIA Chengchang, WANG Shizhong. Preparation of stainless steel powder containing nitrogen by mechanical alloying technique[J]. Chinese Journal of Engineering, 2005, 27(6): 692-694. DOI: 10.13374/j.issn1001-053x.2005.06.013
    [6]LIU Xiancui, SU Lanhai, LI Zhongfu, FU Zhilin, ZHANG Qingdong, HE Chun. Elongation assignment of steel plates between a tension leveler and a skin pass mill for the Acid-Refined 2030 in BaoSteel[J]. Chinese Journal of Engineering, 2005, 27(5): 609-612. DOI: 10.13374/j.issn1001-053x.2005.05.055
    [7]LIN Hai, WANG Yingjie, LI Tianxin, CUI Wei, MENG Fanjiu, ZHANG Xuqiu. Ultra-fine Grinding Gold Concentrate Processing Technology with Stirring mills[J]. Chinese Journal of Engineering, 2004, 26(3): 233-236. DOI: 10.13374/j.issn1001-053x.2004.03.002
    [8]HE Anrui, YANG Quan, ZHANG Qingdong, CHEN Xianlin, WEI Gangcheng, YANG Jinan. Hot Grind Schedule of Work Roll in Hot Strip Mills[J]. Chinese Journal of Engineering, 2002, 24(3): 306-308,312. DOI: 10.13374/j.issn1001-053x.2002.03.062
    [9]Lu Qinggong, Zhu Jingqing. Analyses on Setting Characteristics of Three-roll Tube Mill[J]. Chinese Journal of Engineering, 1999, 21(1): 48-50,89. DOI: 10.13374/j.issn1001-053x.1999.01.014
    [10]Yin Zhongjun, Zhu Yunyan. Exploration for Continuous Milling Process of Vibration Mill[J]. Chinese Journal of Engineering, 1997, 19(S1): 84-88. DOI: 10.13374/j.issn1001-053x.1997.s1.022
  • Cited by

    Periodical cited type(10)

    1. 李青柯,巫焱明,顾帼华,王艳红. 硫化矿磨矿体系的物理和化学作用及其对浮选工艺的影响. 金属矿山. 2024(01): 251-260 .
    2. 王晓,薛玉君,程波,刘俊,李济顺. 矿石破碎颗粒黏结模型黏结键特征及表征. 河南理工大学学报(自然科学版). 2024(02): 41-48 .
    3. 马晓迪,何康,吴波,李小标,孙飞,西成才. 基于DEM-CFD耦合模拟的多转子研磨特性分析. 佳木斯大学学报(自然科学版). 2024(04): 68-72 .
    4. 程学磊,王亚佐,刘俊霞,郑锦辉,海然,何鲜峰. 不同粉煤灰掺量下SCC单轴压缩试验离散元数值分析. 人民黄河. 2024(07): 143-147 .
    5. 第旺平,李艳秋,许宏图,原新宇,金赛珍,刘瑞涛,任英东,周强,刘向阳. 基于DEM的球磨机内介质碰撞特征研究. 有色金属(选矿部分). 2024(09): 57-64+79 .
    6. 肖庆飞,李云啸,周强,刘向阳,谢浩松,王国彬,王肖江. 基于矿石断裂能的半自磨机球径理论公式推导及验证. 中国矿业大学学报. 2024(06): 1237-1246 .
    7. 李全力,程学磊,王亚佐,章伟,李顺群,彭远辉,银利军. 基于PFC2D透水混凝土弯曲破坏模拟. 工程与建设. 2024(05): 1194-1195+1210 .
    8. 孙小旭,何建成,王芏卜,姚建超. 基于离散单元法的立磨机关键影响因子分析. 有色金属(选矿部分). 2023(05): 134-138+152 .
    9. 谢佩,王飞旺,唐冬冬,赵明珠,戴惠新. 数值模拟技术在磁选领域的应用研究进展. 有色金属(选矿部分). 2023(06): 9-18 .
    10. 周永利,毛君,谢苗,毋龙飞,朱昀,孟庆爽. 弛张筛筛分效率与筛面磨损的匹配优化研究. 煤炭科学技术. 2023(11): 202-213 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (1449) PDF downloads (212) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return