Effects of a simulated freezing construction environment on the mass concrete performance
-
-
Abstract
Exhausted shallow resources have turned mining into deep mining, with the mining depth of most mines under construction being more than 1000 m. With the continuous increase of the mining depth of mineral resources, the thickness and strength grade of the shaft lining concrete increases, resulting in higher hydration heat. The freezing method is usually used in deep well construction, resulting in a high temperature on one side and a low temperature on the other side of the shaft wall concrete. The influence law of this environment on concrete needs to be studied. It is of great theoretical significance for deep well construction and service safety to find out the change law of the shaft wall concrete performance under a freezing construction environment. The temperature difference between −5/60 ℃ and −5/70 ℃ was applied to simulate the state of the mass concrete in the freezing method construction environment. The ultrasonic parameters, compressive strength, splitting tensile strength, chloride diffusion coefficient, and bursting liability of concrete under the simulated environment were studied, and the scanning electron microscope of the concrete was analyzed. Results show that the freezing construction environment will cause certain damage to the interior of the concrete, and the damage parallel to the heating direction is greater than that in the vertical direction. The damage of the C50 concrete is greater than that of the C70 concrete, and the temperature gradient will aggravate the internal damage of the concrete. The simulated freezing environment will have adverse effects on the compressive strength, splitting tensile strength, chloride ion permeability, and bursting liability of the concrete. The temperature difference has a positive correlation with the performance reduction rate, which becomes more significant for low-strength concrete. The internal microstructure of the concrete block is uneven due to the simulated freezing environment, the concrete structure at the low-temperature end is loose, and the structure at the high-temperature end is dense, resulting in the decrease of the concrete’s performance.
-
-