YIN Sheng-hua, YAN Ze-peng, YAN Rong-fu, LI De-xian, ZHAO Guo-liang, ZHANG Peng-qiang. Rheological properties and resistance evolution of cemented unclassified tailings-waste rock paste backfill[J]. Chinese Journal of Engineering, 2023, 45(1): 9-18. DOI: 10.13374/j.issn2095-9389.2021.07.31.002
Citation: YIN Sheng-hua, YAN Ze-peng, YAN Rong-fu, LI De-xian, ZHAO Guo-liang, ZHANG Peng-qiang. Rheological properties and resistance evolution of cemented unclassified tailings-waste rock paste backfill[J]. Chinese Journal of Engineering, 2023, 45(1): 9-18. DOI: 10.13374/j.issn2095-9389.2021.07.31.002

Rheological properties and resistance evolution of cemented unclassified tailings-waste rock paste backfill

More Information
  • Corresponding author:

    YAN Ze-peng, E-mail: yan_zepeng@163.com

  • Received Date: July 30, 2021
  • Available Online: September 07, 2021
  • Published Date: December 31, 2022
  • Coarse aggregate paste filling is the core direction of today’s mine development. The coarse aggregate filling can effectively reduce the discharge of the solid mine waste, which is conducive to the realization of safe, clean, and efficient mining of the deposit and can also reduce the production costs of infill mining and promote the coordinated development of green mining. To study the pipeline conveying characteristics of the tailing‒waste rock paste, the rheological properties were tested by a rheometer under different tailing‒waste rock ratios and solid content conditions. A resistance equation integrating the compactness, water‒cement ratio, and volume concentration was constructed. This was then brought into the Comsol software for simulations and compared with the actual measurement results of the ring pipe. Errors measured by the numerical model are verified to be all within 7%, indicating that the model reasonably calculated the resistance characteristics of the tailing-waste rock paste. Variation characteristics of the pipeline conveying resistance under different solid contents, tailing‒waste rock ratios, and initial velocity conditions were also simulated. Experimental results show that the plastic viscosity and yield stress increase with the solid content and tailing‒waste rock ratio. Due to the friction effect between the particles, the resistance loss tends to increase and then decrease with the tailing‒waste rock ratio. The increase in the solid content leads to a decrease in the water content of the paste, which consequently results in difficulty in the flow of coarse aggregate slurry and a rapid increase in the resistance loss. The initial flow rate increases, the particle motion becomes unstable, the friction increases, and the growth rate of the drag loss increases greatly after the “inflection point” of 2.2 m·s−1. It is recommended that the mine should be filled with a tailing‒waste rock ratio of 5∶5 and an initial flow rate of 2.2 m·s−1. The results have certain reference significance for the design of a coarse aggregate paste pipeline conveying system, which helps the development of coarse aggregate paste conveying technology and also has a positive effect on reducing the pipeline conveying resistance and extending the conveying distance.
  • [1]
    杨志强, 王永前, 高谦, 等. 废石尾砂混合料浆管道输送压力损失环管试验. 合肥工业大学学报(自然科学版), 2017, 40(8):1092

    Yang Z Q, Wang Y Q, Gao Q, et al. Research on pressure loss in pipe by conveying mix slurry with waste rock and full tailings based on round pipe test. J Hefei Univ Technol (Nat Sci), 2017, 40(8): 1092
    [2]
    尹升华, 刘家明, 陈威, 等. 不同粗骨料对膏体凝结性能的影响及配比优化. 工程科学学报, 2020, 42(7):829

    Yin S H, Liu J M, Chen W, et al. Optimization of the effect and formulation of different coarse aggregates on performance of the paste backfill condensation. Chin J Eng, 2020, 42(7): 829
    [3]
    冯国瑞, 贾学强, 郭育霞, 等. 废弃混凝土粗骨料对充填膏体性能的影响. 煤炭学报, 2015, 40(6):1320 doi: 10.13225/j.cnki.jccs.2015.3054

    Feng G R, Jia X Q, Guo Y X, et al. Influence of the wasted concrete coarse aggregate on the performance of cemented paste backfill. J China Coal Soc, 2015, 40(6): 1320 doi: 10.13225/j.cnki.jccs.2015.3054
    [4]
    Yang X B, Xiao B L, Gao Q, et al. Determining the pressure drop of cemented Gobi sand and tailings paste backfill in a pipe flow. Constr Build Mater, 2020, 255: 119371 doi: 10.1016/j.conbuildmat.2020.119371
    [5]
    Benzaazoua M, Bussière B, Demers I, et al. Integrated mine tailings management by combining environmental desulphurization and cemented paste backfill: Application to mine Doyon, Quebec, Canada. Miner Eng, 2008, 21(4): 330 doi: 10.1016/j.mineng.2007.11.012
    [6]
    程纬华. 粗骨料高浓度自流充填技术研究[学位论文]. 昆明: 昆明理工大学, 2012

    Cheng W H. Study on High Concentration Gravity Filling Technology of Coarse Aggregate [Dissertation]. Kunming: Kunming University of Science and Technology, 2012
    [7]
    Wu D, Yang B G, Liu Y C. Transportability and pressure drop of fresh cemented coal gangue-fly ash backfill (CGFB) slurry in pipe loop. Powder Technol, 2015, 284: 218 doi: 10.1016/j.powtec.2015.06.072
    [8]
    Liu L, Fang Z Y, Wu Y P, et al. Experimental investigation of solid-liquid two-phase flow in cemented rock-tailings backfill using Electrical Resistance Tomography. Constr Build Mater, 2018, 175: 267 doi: 10.1016/j.conbuildmat.2018.04.139
    [9]
    张连富, 吴爱祥, 王洪江. 泵送剂对高含泥膏体流变特性影响及机理. 工程科学学报, 2018, 40(8):918

    Zhang L F, Wu A X, Wang H J. Effects and mechanism of pumping agent on rheological properties of highly muddy paste. Chin J Eng, 2018, 40(8): 918
    [10]
    蔡嗣经, 黄刚, 吴迪, 等. 尾砂充填料浆流变性能模型与试验研究. 东北大学学报(自然科学版), 2015, 36(6):882 doi: 10.3969/j.issn.1005-3026.2015.06.027

    Cai S J, Huang G, Wu D, et al. Experimental and modeling study on the rheological properties of tailings backfill. J Northeast Univ (Nat Sci), 2015, 36(6): 882 doi: 10.3969/j.issn.1005-3026.2015.06.027
    [11]
    Boylu F, Dinçer H, Ateşok G. Effect of coal particle size distribution, volume fraction and rank on the rheology of coal-water slurries. Fuel Process Technol, 2004, 85(4): 241 doi: 10.1016/S0378-3820(03)00198-X
    [12]
    Petit J Y, Khayat K H, Wirquin E. Coupled effect of time and temperature on variations of yield value of highly flowable mortar. Cem Concr Res, 2006, 36(5): 832 doi: 10.1016/j.cemconres.2005.11.001
    [13]
    吴爱祥, 程海勇, 王贻明, 等. 考虑管壁滑移效应膏体管道的输送阻力特性. 中国有色金属学报, 2016, 26(1):180 doi: 10.19476/j.ysxb.1004.0609.2016.01.021

    Wu A X, Cheng H Y, Wang Y M, et al. Transport resistance characteristic of paste pipeline considering effect of wall slip. Chin J Nonferrous Met, 2016, 26(1): 180 doi: 10.19476/j.ysxb.1004.0609.2016.01.021
    [14]
    刘晓辉. 膏体流变行为及其管流阻力特性研究[学位论文]. 北京: 北京科技大学, 2015

    Liu X H. Study on Rheological Behavior and Pipe Flow Resistance of Paste Backfill [Dissertation]. Beijing: University of Science and Technology Beijing, 2015
    [15]
    叶坚, 夏建新, Malczewska Beata. 水平管道水力输送粗粒物料的阻力损失研究. 金属矿山, 2011(7):12

    Ye J, Xia J X, Beata M. Study on the resistance loss of hydraulic transport for coarse particles in horizontal pipeline. Met Mine, 2011(7): 12
    [16]
    Wu D, Yang B G, Liu Y C. Pressure drop in loop pipe flow of fresh cemented coal gangue-fly ash slurry: Experiment and simulation. Adv Powder Technol, 2015, 26(3): 920 doi: 10.1016/j.apt.2015.03.009
    [17]
    杨天雨, 乔登攀, 王俊, 等. 废石-风砂高浓度料浆管道输送数值模拟及管输阻力新模型. 中国有色金属学报, 2021, 31(1):234 doi: 10.11817/j.ysxb.1004.0609.2021-36517

    Yang T Y, Qiao D P, Wang J, et al. Numerical simulation and new model of pipeline transportation resistance of waste rock-aeolian sand high concentration slurry. Chin J Nonferrous Met, 2021, 31(1): 234 doi: 10.11817/j.ysxb.1004.0609.2021-36517
    [18]
    张钦礼, 刘奇, 赵建文, 等. 深井似膏体充填管道的输送特性. 中国有色金属学报, 2015, 25(11):3190 doi: 10.19476/j.ysxb.1004.0609.2015.11.030

    Zhang Q L, Liu Q, Zhao J W, et al. Pipeline transportation characteristics of filling paste-like slurry pipeline in deep mine. Chin J Nonferrous Met, 2015, 25(11): 3190 doi: 10.19476/j.ysxb.1004.0609.2015.11.030
    [19]
    吴迪, 蔡嗣经, 杨威, 等. 基于CFD的充填管道固液两相流输送模拟及试验. 中国有色金属学报, 2012, 22(7):2133

    Wu D, Cai S J, Yang W, et al. Simulation and experiment of backfilling pipeline transportation of solid-liquid two-phase flow based on CFD. Chin J Nonferrous Met, 2012, 22(7): 2133
    [20]
    王新民, 张德明, 张钦礼, 等. 基于FLOW-3D软件的深井膏体管道自流输送性能. 中南大学学报(自然科学版), 2011, 42(7):2102

    Wang X M, Zhang D M, Zhang Q L, et al. Pipeline self-flowing transportation property of paste based on FLOW-3D software in deep mine. J Central South Univ (Sci Technol), 2011, 42(7): 2102
    [21]
    Xue Z L, Gan D Q, Zhang Y Z, et al. Rheological behavior of ultrafine-tailings cemented paste backfill in high-temperature mining conditions. Constr Build Mater, 2020, 253: 119212 doi: 10.1016/j.conbuildmat.2020.119212
    [22]
    吴爱祥, 刘晓辉, 王洪江, 等. 结构流充填料浆管道输送阻力特性. 中南大学学报(自然科学版), 2014, 45(12):4325

    Wu A X, Liu X H, Wang H J, et al. Resistance characteristics of structure fluid backfilling slurry in pipeline transport. J Central South Univ (Sci Technol), 2014, 45(12): 4325
    [23]
    张修香, 乔登攀. 废石-尾砂高浓度料浆的流变特性及屈服应力预测模型. 安全与环境学报, 2015, 15(4):278 doi: 10.13637/j.issn.1009-6094.2015.04.058

    Zhang X X, Qiao D P. Rheological property and yield stress forecasting model of high-density slurry with waste rock-tailings. J Saf Environ, 2015, 15(4): 278 doi: 10.13637/j.issn.1009-6094.2015.04.058
    [24]
    侯永强, 尹升华, 戴超群, 等. 尾矿膏体流变特性和管输阻力计算模型. 中国有色金属学报, 2021, 31(2):510 doi: 10.11817/j.ysxb.1004.0609.2021-35800

    Hou Y Q, Yin S H, Dai C Q, et al. Rheological properties and pipeline resistance calculation model in tailings paste. Chin J Nonferrous Met, 2021, 31(2): 510 doi: 10.11817/j.ysxb.1004.0609.2021-35800
    [25]
    Cheng H Y, Wu S C, Li H, et al. Influence of time and temperature on rheology and flow performance of cemented paste backfill. Constr Build Mater, 2020, 231: 117117 doi: 10.1016/j.conbuildmat.2019.117117
    [26]
    薛振林, 闫泽鹏, 焦华喆, 等. 全尾砂深锥浓密过程中絮团的动态沉降规律. 中国有色金属学报, 2020, 30(9):2206 doi: 10.11817/j.ysxb.1004.0609.2020-37563

    Xue Z L, Yan Z P, Jiao H Z, et al. Dynamic settlement law of flocs during unclassified tailings in deep cone thickening process. Chin J Nonferrous Met, 2020, 30(9): 2206 doi: 10.11817/j.ysxb.1004.0609.2020-37563
    [27]
    甘德清, 孙海宽, 薛振林, 等. 温度影响下的充填料浆大流量管输流态演化. 中国矿业大学学报, 2021, 50(2):248 doi: 10.13247/j.cnki.jcumt.001225

    Gan D Q, Sun H K, Xue Z L, et al. Transport state evolution of the packed slurry with the influence of temperature. J China Univ Min Technol, 2021, 50(2): 248 doi: 10.13247/j.cnki.jcumt.001225

Catalog

    Article Metrics

    Article views (1346) PDF downloads (96) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return