YAN Xiao-xin, FENG Yan-hui, QIU Lin, ZHANG Xin-xin. Simulation of thermal properties of erythritol/carbon nanotube composite phase change materials[J]. Chinese Journal of Engineering, 2022, 44(4): 722-729. DOI: 10.13374/j.issn2095-9389.2021.09.14.002
Citation: YAN Xiao-xin, FENG Yan-hui, QIU Lin, ZHANG Xin-xin. Simulation of thermal properties of erythritol/carbon nanotube composite phase change materials[J]. Chinese Journal of Engineering, 2022, 44(4): 722-729. DOI: 10.13374/j.issn2095-9389.2021.09.14.002

Simulation of thermal properties of erythritol/carbon nanotube composite phase change materials

More Information
  • Corresponding author:

    FENG Yan-hui, E-mail: yhfeng@me.ustb.edu.cn

    QIU Lin, E-mail: qiulin@ustb.edu.cn

  • Received Date: September 13, 2021
  • Available Online: December 01, 2021
  • Published Date: April 01, 2022
  • In the area of “carbon peaking and carbon neutralization,” changing energy structure from primary energy to new energy is an extremely important issue. Due to the intermittent and fluctuating characteristics of new energy, energy storage technology has proven a viable solution to this issue thus has attracted extensive attention. As a key to energy storage technology, the problem of the low thermal conductivity of phase change materials (PCMs) requires immediate attention. Erythritol is a high enthalpy phase change material commonly used in low-to-medium temperature processes. Its thermal conductivity of only 0.7 W·m–1·K–1 seriously hinders its energy utilization efficiency in practical application. In this paper, erythritol is the main research focus, and single-walled carbon nanotubes (CNTs) of ultra-high thermal conductivity are used as thermal conductivity reinforcements. The effects of length, mass fraction, and the distribution of CNTs on the thermal conductivity of erythritol/CNT composite PCMs were studied by means of molecular dynamics simulation. When the axial lengths of the CNTs were less than their phonon mean free paths, the thermal conductivity of the composite PCMs increased with increasing CNT axial length and mass fraction, although clear anisotropy was exhibited. Due to the introduction of erythritol–CNTs interfacial thermal resistance, the radial thermal conductivity of the composite materials was lower than that of pure erythritol. When CNTs were randomly distributed in erythritol, the anisotropy of thermal conductivity was significantly improved, as was thermal conductivity in all directions. Comparing the phonon vibration densities of the states of erythritol and CNT before and after recombination, it was found that, due to the interaction between the two, the phonon vibration of CNT was suppressed, and the phonon heat transport in erythritol was excited, thus improving thermal conductivity.
  • [1]
    Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56 doi: 10.1038/354056a0
    [2]
    Qiu L, Zhu N, Feng Y H, et al. A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids. Phys Rep, 2020, 843: 1 doi: 10.1016/j.physrep.2019.12.001
    [3]
    Hone J, Whitney M, Piskoti C, et al. Thermal conductivity of single-walled carbon nanotubes. Phys Rev B, 1999, 59(4): R2514 doi: 10.1103/PhysRevB.59.R2514
    [4]
    Berber S, Kwon Y K, Tománek D. Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett, 2000, 84(20): 4613 doi: 10.1103/PhysRevLett.84.4613
    [5]
    Xu C, Xu S L, Eticha R D. Experimental investigation of thermal performance for pulsating flow in a microchannel heat sink filled with PCM (paraffin/CNT composite). Energy Convers Manag, 2021, 236: 114071 doi: 10.1016/j.enconman.2021.114071
    [6]
    Al-Ahmed A, Sarı A, Mazumder M A J, et al. Thermal energy storage and thermal conductivity properties of fatty acid/fatty acid-grafted-CNTs and fatty acid/CNTs as novel composite phase change materials. Sci Rep, 2020, 10: 15388 doi: 10.1038/s41598-020-71891-1
    [7]
    Cong R S, Xu C L, Chen Y K, et al. Enhanced thermal conductivity of palmitic acid/copper foam composites with carbon nanotube as thermal energy storage materials. J Energy Storage, 2021, 40: 102783 doi: 10.1016/j.est.2021.102783
    [8]
    Rabady R I, Malkawi D S. Thermal conductivity enhancement of sodium thiosulfate pentahydrate by adding carbon nano-tubes/graphite nano-particles. J Energy Storage, 2020, 27: 101166 doi: 10.1016/j.est.2019.101166
    [9]
    Li A, Hai G T, Cheng P, et al. Molecular insights into the interaction mechanism between C18 phase change materials and methyl-modified carbon nanotubes. Ceram Int, 2021, 47(16): 23564 doi: 10.1016/j.ceramint.2021.05.074
    [10]
    Tafrishi H, Sadeghzadeh S, Ahmadi R, et al. Investigation of tetracosane thermal transport in presence of graphene and carbon nanotube fillers—A molecular dynamics study. J Energy Storage, 2020, 29: 101321 doi: 10.1016/j.est.2020.101321
    [11]
    Yu Y S, Zhao C Y, Tao Y B, et al. Superior thermal energy storage performance of NaCl–SWCNT composite phase change materials: A molecular dynamics approach. Appl Energy, 2021, 290: 116799 doi: 10.1016/j.apenergy.2021.116799
    [12]
    Du Y P, Zhou T, Zhao C Y, et al. Molecular dynamics simulation on thermal enhancement for carbon nano tubes (CNTs) based phase change materials (PCMs). Int J Heat Mass Transf, 2022, 182: 122017 doi: 10.1016/j.ijheatmasstransfer.2021.122017
    [13]
    Zhang H C, Rindt C C M, Smeulders D M J, et al. Nanoscale heat transfer in carbon nanotubes - sugar alcohol composite as heat storage materials. J Phys Chem C, 2016, 120(38): 21915 doi: 10.1021/acs.jpcc.6b05466
    [14]
    Zou H Y, Feng Y H, Qiu L, et al. Effect of the loading amount and arrangement of iodine chains on the interfacial thermal transport of carbon nanotubes: A molecular dynamics study. RSC Adv, 2020, 10(72): 44196 doi: 10.1039/D0RA06870E
    [15]
    Ikeshoji T, Hafskjold B. Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface. Mol Phys, 1994, 81(2): 251 doi: 10.1080/00268979400100171
    [16]
    Jund P, Jullien R. Molecular-dynamics calculation of the thermal conductivity of vitreous silica. Phys Rev B, 1999, 59(21): 13707 doi: 10.1103/PhysRevB.59.13707
    [17]
    Müller-Plathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J Chem Phys, 1997, 106(14): 6082 doi: 10.1063/1.473271
    [18]
    Zhang Q, Luo Z L, Guo Q L, et al. Preparation and thermal properties of short carbon fibers/erythritol phase change materials. Energy Convers Manag, 2017, 136: 220 doi: 10.1016/j.enconman.2017.01.023
    [19]
    Shimada A. Crystal and molecular structure of mesoerythritol. Acta Cryst, 1958, 11(10): 748 doi: 10.1107/S0365110X58002036
    [20]
    Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995, 117(1): 1 doi: 10.1006/jcph.1995.1039
    [21]
    Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modelling Simul Mater Sci Eng, 2010, 18(1): 015012 doi: 10.1088/0965-0393/18/1/015012
    [22]
    Schmid N, Eichenberger A P, Choutko A, et al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J, 2011, 40(7): 843 doi: 10.1007/s00249-011-0700-9
    [23]
    Tersoff J. New empirical approach for the structure and energy of covalent systems. Phys Rev B, 1988, 37(12): 6991 doi: 10.1103/PhysRevB.37.6991
    [24]
    Qiu L, Zhu N, Feng Y H, et al. Interfacial thermal transport properties of polyurethane/carbon nanotube hybrid composites. Int J Heat Mass Transf, 2020, 152: 119565 doi: 10.1016/j.ijheatmasstransfer.2020.119565
    [25]
    Hu Y, Feng T L, Gu X K, et al. Unification of nonequilibrium molecular dynamics and the mode-resolved phonon Boltzmann equation for thermal transport simulations. Phys Rev B, 2020, 101(15): 155308 doi: 10.1103/PhysRevB.101.155308
    [26]
    Li Z, Xiong S Y, Sievers C, et al. Influence of thermostatting on nonequilibrium molecular dynamics simulations of heat conduction in solids. J Chem Phys, 2019, 151(23): 234105 doi: 10.1063/1.5132543
    [27]
    Feng B, Fan L W, Zeng Y, et al. Atomistic insights into the effects of hydrogen bonds on the melting process and heat conduction of erythritol as a promising latent heat storage material. Int J Therm Sci, 2019, 146: 106103 doi: 10.1016/j.ijthermalsci.2019.106103
    [28]
    Yan X X, Feng Y H, Qiu L, et al. Thermal conductivity and phase change characteristics of hierarchical porous diamond/erythritol composite phase change materials. Energy, 2021, 233: 121158 doi: 10.1016/j.energy.2021.121158
    [29]
    Höhlein S, König-Haagen A, Brüggemann D. Thermophysical characterization of MgCl2·6H2O, xylitol and erythritol as phase change materials (PCM) for latent heat thermal energy storage (LHTES). Materials, 2017, 10(4): 444 doi: 10.3390/ma10040444
    [30]
    Chai Y, Xiao Z Y, Chan P C H. Horizontally aligned carbon nanotube bundles for interconnect application: Diameter-dependent contact resistance and mean free path. Nanotechnology, 2010, 21(23): 235705 doi: 10.1088/0957-4484/21/23/235705
    [31]
    Yu C, Shi L, Yao Z, et al. Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett, 2005, 5(9): 1842 doi: 10.1021/nl051044e
    [32]
    Sääskilahti K, Oksanen J, Volz S, et al. Frequency-dependent phonon mean free path in carbon nanotubes from nonequilibrium molecular dynamics. Phys Rev B, 2015, 91(11): 115426 doi: 10.1103/PhysRevB.91.115426
    [33]
    Wang J, Li C, Li J, et al. A multiscale study of the filler-size and temperature dependence of the thermal conductivity of graphene-polymer nanocomposites. Carbon, 2021, 175: 259 doi: 10.1016/j.carbon.2020.12.086
    [34]
    Bae M H, Li Z Y, Aksamija Z, et al. Ballistic to diffusive crossover of heat flow in graphene ribbons. Nat Commun, 2013, 4: 1734 doi: 10.1038/ncomms2755
    [35]
    Qiu L, Zhang X H, Guo Z X, et al. Interfacial heat transport in nano-carbon assemblies. Carbon, 2021, 178: 391 doi: 10.1016/j.carbon.2021.02.105
    [36]
    Feng D L, Feng Y H, Liu Y Z, et al. Thermal conductivity of a 2D covalent organic framework and its enhancement using fullerene 3D self-assembly: A molecular dynamics simulation. J Phys Chem C, 2020, 124(15): 8386 doi: 10.1021/acs.jpcc.0c00448
    [37]
    Yousefi F, Khoeini F, Rajabpour A. Thermal conductivity and thermal rectification of nanoporous graphene: A molecular dynamics simulation. Int J Heat Mass Transf, 2020, 146: 118884 doi: 10.1016/j.ijheatmasstransfer.2019.118884
    [38]
    Yu Z P, Feng Y H, Feng D L, et al. Thermal conductance bottleneck of a three dimensional graphene–CNT hybrid structure: A molecular dynamics simulation. Phys Chem Chem Phys, 2019, 22(1): 337
    [39]
    Zhao C Y, Tao Y B, Yu Y S. Molecular dynamics simulation of thermal and phonon transport characteristics of nanocomposite phase change material. J Mol Liq, 2021, 329: 115448 doi: 10.1016/j.molliq.2021.115448
    [40]
    Dickey J M, Paskin A. Computer simulation of the lattice dynamics of solids. Phys Rev, 1969, 188(3): 1407 doi: 10.1103/PhysRev.188.1407
  • Related Articles

    [1]Molecular Dynamics Simulation and Flame Retardant Characteristics Analysis of Steel Slag Modified Rubber[J]. Chinese Journal of Engineering. DOI: 10.13374/j.issn2095-9389.2024.08.30.002
    [2]XIE Lu, AN Hao-jie, QIN Qin, ZANG Yong. Molecular dynamic simulations of the growth and mechanical properties of Zr—Cu films[J]. Chinese Journal of Engineering, 2019, 41(4): 497-504. DOI: 10.13374/j.issn2095-9389.2019.04.010
    [3]SUN Feng-yan, HUANG Lu, WANG Lin-bing. Molecular dynamics simulation of micro frictional contact characteristics between tires and asphalt pavement[J]. Chinese Journal of Engineering, 2016, 38(6): 847-852. DOI: 10.13374/j.issn2095-9389.2016.06.015
    [4]WU Mao, CHANG Ling-ling, CUI Ya-nan, CHEN Xiao-wei, HE Xin-bo, QU Xuan-hui. Molecular dynamics simulation for the sintering process of Au nanoparticles[J]. Chinese Journal of Engineering, 2014, 36(3): 345-353. DOI: 10.13374/j.issn1001-053x.2014.03.011
    [5]SHI Na, NIE Jun-hui, ZHANG Ya-feng, JIA Cheng-chang. Mechanical and physical properties of carbon nanotube reinforced aluminum matrix composites[J]. Chinese Journal of Engineering, 2013, 35(1): 104-111. DOI: 10.13374/j.issn1001-053x.2013.01.005
    [6]LÜ Guo-cai, SU Yan-jing, CHU Wu-yang, QIAO Li-jie. Molecular dynamics simulation of plastic deformation during nanoindentation[J]. Chinese Journal of Engineering, 2012, 34(8): 898-902. DOI: 10.13374/j.issn1001-053x.2012.08.006
    [7]XIA De-hong, GUO Shan-shan, REN Ling, DU Zheng. General calculating method of thermal conductivity for porous materials[J]. Chinese Journal of Engineering, 2012, 34(6): 707-711. DOI: 10.13374/j.issn1001-053x.2012.06.003
    [8]WANG Rong-shan, HOU Huai-yu, CHEN Guo-liang. Molecular dynamics simulation of liquid Cu during isothermal solidification[J]. Chinese Journal of Engineering, 2009, 31(9): 1127-1131. DOI: 10.13374/j.issn1001-053x.2009.09.006
    [9]NIU Fu-sheng, NI Wen, LIANG Yin-ying. Numerical simulation of heat conduction in polyfoam-fly ash thermal insulation materials[J]. Chinese Journal of Engineering, 2009, 31(1): 103-107. DOI: 10.13374/j.issn1001-053x.2009.01.019
    [10]LIU Yusong, ZHANG Xinxin, YU Fan. Molecular dynamics simulation of thermal conductivity of a gas in nanoscale pores[J]. Chinese Journal of Engineering, 2006, 28(12): 1182-1185. DOI: 10.13374/j.issn1001-053x.2006.12.040
  • Cited by

    Periodical cited type(4)

    1. 张中天,邢美波,景栋梁,张洪发. 磁场诱导取向碳纳米管强化凝固行为研究. 化工新型材料. 2024(09): 170-175 .
    2. 千存存,李明佳,张洪泰. 糖醇基复合相变材料的制备及其光热转换与存储性能研究. 太阳能学报. 2024(11): 627-635 .
    3. 李沐,李亚溪,李传常. 相变储冷技术及其在空调系统中的应用. 储能科学与技术. 2023(01): 180-197 .
    4. 陈红兵,高雪宁,刘涛,王聪聪,赵瑞,孙俊辉,王传岭,何迪. 应用石蜡/GO复合相变材料的太阳能PV/T系统性能. 储能科学与技术. 2023(03): 661-668 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (4683) PDF downloads (109) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return