LIU Qing, SHAO Xin, YANG Jian-ping, ZHANG Jiang-shan. Multiscale modeling and collaborative manufacturing for steelmaking plants[J]. Chinese Journal of Engineering, 2021, 43(12): 1698-1712. DOI: 10.13374/j.issn2095-9389.2021.09.27.010
Citation: LIU Qing, SHAO Xin, YANG Jian-ping, ZHANG Jiang-shan. Multiscale modeling and collaborative manufacturing for steelmaking plants[J]. Chinese Journal of Engineering, 2021, 43(12): 1698-1712. DOI: 10.13374/j.issn2095-9389.2021.09.27.010

Multiscale modeling and collaborative manufacturing for steelmaking plants

More Information
  • Corresponding author:

    LIU Qing, E-mail: qliu@ustb.edu.cn

  • Received Date: September 26, 2021
  • Available Online: November 01, 2021
  • Published Date: December 23, 2021
  • With the recent, rapid developments of metallurgical theory and intelligent steelmaking technology, the intelligent upgrading of iron and steel enterprises has attracted increased attention and become a topic of discussion in the steel industry. Collaborative manufacturing is an important feature of intelligent manufacturing in steel enterprises, and it plays an important role in improving the production efficiency and reducing the carbon emissions of iron and steel enterprises. This study elaborated the structure and the contents of multiscale modeling and the collaborative manufacturing of steelmaking plants in detail. The collaborative control of steelmaking plants was studied from the scales of individual processes, workshop sections, and the operation of steelmaking plants. Systematic modeling studies had been conducted from the process control system of processes/devices to the manufacturing execution system (MES). The process control models, including the converter steelmaking process, secondary metallurgy process, and continuous casting process, and mass flow operation optimization models with the production planning and scheduling model as the core were established. In addition, the high-efficiency operation of multi processes/devices was realized through the dynamic coordination of process control and production planning and scheduling in the steelmaking plants. The data interface between process control models, production planning and scheduling models, and MES had been developed to realize the comprehensive integration of MES, production process control, process operation control, production planning, and scheduling system. It had formed the steelmaking-continuous casting process integrated manufacturing technology supported by the precise process control co-driven by mechanism and data models, collaborative process operation, and production planning and scheduling based on “rules + algorithms.” Through multilevel vertical coordination and multiprocess horizontal coordination, the coordinated operation and the control of steelmaking plants were realized. The study results demonstrated a beneficial exploration and the practice of intelligent manufacturing in the steelmaking-continuous casting process, which had strong reference value for intelligent manufacturing enterprises in the process industry, and had a demonstration effect for the green and the intelligent development of the metallurgical industry. After the application, the collaborative manufacturing level of the steelmaking plant had been considerably improved, and significant economic and social benefits had been achieved.
  • [1]
    刘青, 田乃媛, 殷瑞钰. 炼钢厂系统的运行原则与调控策略. 过程工程学报, 2003, 3(2):171 doi: 10.3321/j.issn:1009-606X.2003.02.015

    Liu Q, Tian N Y, Yin R Y. Operation principle and control strategy for steelmaking workshop system. Chin J Process Eng, 2003, 3(2): 171 doi: 10.3321/j.issn:1009-606X.2003.02.015
    [2]
    Wang Z, Chang J, Ju Q P, et al. Prediction model of end-point manganese content for BOF steelmaking process. ISIJ Int, 2012, 52(9): 1585 doi: 10.2355/isijinternational.52.1585
    [3]
    林文辉, 焦树强, 孙建坤, 等. 转炉吹炼后期碳含量预报的改进指数模型. 工程科学学报, 2020, 42(7):854

    Lin W H, Jiao S Q, Sun J K, et al. Modified exponential model for carbon prediction in the end blowing stage of basic oxygen furnace converter. Chin J Eng, 2020, 42(7): 854
    [4]
    Wang Z, Xie F M, Wang B, et al. The control and prediction of end-point phosphorus content during BOF steelmaking process. Steel Res Int, 2014, 85(4): 599 doi: 10.1002/srin.201300194
    [5]
    李南, 林文辉, 曹玲玲, 等. 基于熔池混匀度的转炉烟气分析定碳模型. 工程科学学报, 2018, 40(10):1244

    Li N, Lin W H, Cao L L, et al. Carbon prediction model for basic oxygen furnace off-gas analysis based on bath mixing degree. Chin J Eng, 2018, 40(10): 1244
    [6]
    张壮, 曹玲玲, 林文辉, 等. 基于IPSO−RELM转炉冶炼终点锰含量预测模型. 工程科学学报, 2019, 41(8):1052

    Zhang Z, Cao L L, Lin W H, et al. Improved prediction model for BOF end-point manganese content based on IPSO−RELM method. Chin J Eng, 2019, 41(8): 1052
    [7]
    付国庆, 刘青, 汪宙, 等. LF精炼终点钢水温度灰箱预报模型. 北京科技大学学报, 2013, 35(7):948

    Fu G Q, Liu Q, Wang Z, et al. Grey box model for predicting the LF end-point temperature of molten steel. J Univ Sci Technol Beijing, 2013, 35(7): 948
    [8]
    Xin Z C, Zhang J S, Zhang J G, et al. Mathematical modelling and plant trial on slagging regime in a ladle furnace for high-efficiency desulphurization. Ironmaking Steelmaking, 2021: 1
    [9]
    Yang J P, Zhang J S, Guo W D, et al. End-point temperature preset of molten steel in the final refining unit based on an integration of deep neural network and multi-process operation simulation. ISIJ Int, 2021, 61(7): 2100 doi: 10.2355/isijinternational.ISIJINT-2020-540
    [10]
    Dou K, Yang Z G, Liu Q, et al. Influence of secondary cooling mode on solidification structure and macro-segregation behavior for high-carbon continuous casting bloom. High Temp Mater Process, 2017, 36(7): 741 doi: 10.1515/htmp-2016-0022
    [11]
    杨振国. GCr15轴承钢连铸坯宏观碳偏析的影响因素及控制研究[学位论文]. 北京: 北京科技大学, 2014

    Yang Z G. Research on the Influencing Factors and Control of Carbon Macrosegregation of Blooms in Continuous Casting of GCr15 Bearing Steel [Dissertation]. Beijing: University of Science and Technology Beijing, 2014
    [12]
    陈恒志. 连铸坯典型缺陷预测研究[学位论文]. 北京: 北京科技大学, 2017

    Chen H Z. Research on Prediction of Typical Defects of Continuous Casting Bloom [Dissertation]. Beijing: University of Science and Technology Beijing, 2017
    [13]
    Han Y S, Yan W, Zhang J S, et al. Optimization of thermal soft reduction on continuous-casting billet. ISIJ Int, 2020, 60(1): 106 doi: 10.2355/isijinternational.ISIJINT-2019-409
    [14]
    Li G H, Wang B, Liu Q, et al. A process model for BOF process based on bath mixing degree. Int J Miner Metall Mater, 2010, 17(6): 715 doi: 10.1007/s12613-010-0379-4
    [15]
    汪宙. 转炉冶炼中高碳钢过程及终点控制研究[学位论文]. 北京: 北京科技大学, 2016

    Wang Z. Study on the Control of Steelmaking Process and Blowing End-Point for Medium-High Carbon Steel Melting by Converter [Dissertation]. Beijing: University of Science and Technology Beijing, 2016
    [16]
    Han Y S, Wang X Y, Zhang J S, et al. Comparison of transverse uniform and non-uniform secondary cooling strategies on heat transfer and solidification structure of continuous-casting billet. Metals, 2019, 9(5): 543 doi: 10.3390/met9050543
    [17]
    窦志超, 张晓峰, 尹佳, 等. 基于有效拉速和有效过热度的连铸二冷控制模型. 北京科技大学学报, 2011, 33(11):1349

    Dou Z C, Zhang X F, Yin J, et al. Secondary cooling control model based on effective-speed and effective-superheat in continuous casting. J Univ Sci Technol Beijing, 2011, 33(11): 1349
    [18]
    Dou K, Liu Q. A new cooling strategy in curved continuous casting process of vanadium micro-alloyed YQ450NQR1 steel bloom combining experimental and modeling approach. Metall Mater Trans A, 2020, 51(8): 3945 doi: 10.1007/s11661-020-05819-9
    [19]
    刘青, 韩延申, 张江山. 一种改善包晶钢连铸中厚板坯中心偏析与表面裂纹的方法: 中国专利, CN111774546B. 2021-03-30

    Liu Q, Han Y S, Zhang J S. Method for Improving Center Segregation and Surface Cracks of Peritectic Steel Continuous Casting Medium-Thickness Slab: China Patent, CN111774546B. 2021-03-30
    [20]
    窦坤. 钒微合金化钢连铸方坯凝固特性与组织性能研究[学位论文]. 北京: 北京科技大学, 2017

    Dou K. Research on Solidification Characteristics and Microstructure Properties for Vanadium Micro-Alloyed Steel Bloom in Continuous Casting Process [Dissertation]. Beijing: University of Science and Technology Beijing, 2017
    [21]
    陈尚. 连铸板坯二冷优化与典型缺陷研究[学位论文]. 北京: 北京科技大学, 2018

    Chen S. Research on Secondary Cooling Optimization and Typical Defects of Continuous Casting Slabs [Dissertation]. Beijing: University of Science and Technology Beijing, 2018
    [22]
    Zou L L, Zhang J S, Liu Q, et al. Prediction of central carbon segregation in continuous casting billet using A regularized extreme learning machine model. Metals, 2019, 9(12): 1312 doi: 10.3390/met9121312
    [23]
    殷瑞钰. 关于智能化钢厂的讨论——从物理系统一侧出发讨论钢厂智能化. 钢铁, 2017, 52(6):1

    Yin R Y. A discussion on “smart” steel plant—view from physical system side. Iron Steel, 2017, 52(6): 1
    [24]
    刘青, 王刚, 王彬, 等. 基于产品结构的炼钢−连铸区段产能解析. 重庆大学学报, 2014, 37(1):75 doi: 10.11835/j.issn.1000-582X.2014.01.012

    Liu Q, Wang G, Wang B, et al. Capacity analysis of steelmaking-continuous casting section based on different products mixes. J Chongqing Univ, 2014, 37(1): 75 doi: 10.11835/j.issn.1000-582X.2014.01.012
    [25]
    穆衍清. 转炉特殊钢厂炼钢−连铸生产过程运行优化研究[学位论文]. 北京: 北京科技大学, 2011

    Mu Y Q. Research on Operation Optimization for Productive Process of Steelmaking-Continuous Casting in BOF Special Steel Plants [Dissertation]. Beijing: University of Science and Technology Beijing, 2011
    [26]
    刘青, 黄星武, 富平原. 炼钢厂系统生产模式优化. 北京科技大学学报, 2005, 27(6):736 doi: 10.3321/j.issn:1001-053X.2005.06.024

    Liu Q, Huang X W, Fu P Y. Production mode optimization of a steelmaking workshop system. J Univ Sci Technol Beijing, 2005, 27(6): 736 doi: 10.3321/j.issn:1001-053X.2005.06.024
    [27]
    杨建平, 张江山, 刘青. 炼钢−连铸区段3种典型工序界面技术研究进展. 工程科学学报, 2020, 42(12):1542

    Yang J P, Zhang J S, Liu Q. Research progress on three kinds of classic process interface technologies in steelmaking-continuous casting section. Chin J Eng, 2020, 42(12): 1542
    [28]
    王彬, 王闯, 王宝, 等. 炼钢-连铸过程生产计划与调度问题综合优化研究. 武汉科技大学学报, 2014, 37(3):161

    Wang B, Wang C, Wang B, et al. Comprehensive optimization of production planning and scheduling for steelmaking-continuous casting process. J Wuhan Univ Sci Technol, 2014, 37(3): 161
    [29]
    王闯, 刘青, 李庆益, 等. 基于改进单亲遗传算法的炼钢最优炉次计划模型. 控制理论与应用, 2013, 30(6):734

    Wang C, Liu Q, Li Q Y, et al. Optimal charge plan model for steelmaking based on modified partheno-genetic algorithm. Control Theory Appl, 2013, 30(6): 734
    [30]
    邹草云. 长材型特殊钢厂炼钢−连铸过程生产计划优化研究[学位论文]. 北京: 北京科技大学, 2016

    Zou C Y. Research on Planning Optimization for Steelmaking-Continuous Casting Process in Special Steel Plants of Long Products [Dissertation]. Beijing: University of Science and Technology Beijing, 2016
    [31]
    刘倩. 基于规则的炼钢-连铸过程生产调度遗传算法模型[学位论文]. 北京: 北京科技大学, 2020

    Liu Q. Rule-Based Genetic Algorithm Model of Production Scheduling for Steelmaking-Continuous Casting Process [Dissertation]. Beijing: University of Science and Technology Beijing, 2020
    [32]
    刘青, 刘倩, 杨建平, 等. 炼钢−连铸生产调度的研究进展. 工程科学学报, 2020, 42(2):144

    Liu Q, Liu Q, Yang J P, et al. Progress of research on steelmaking-continuous casting production scheduling. Chin J Eng, 2020, 42(2): 144
    [33]
    刘倩, 杨建平, 王柏琳, 等. 基于“炉−机对应”的炼钢−连铸生产调度问题遗传优化模型. 工程科学学报, 2020, 42(5):645

    Liu Q, Yang J P, Wang B L, et al. Genetic optimization model of steelmaking-continuous casting production scheduling based on the “furnace-caster coordinating” strategy. Chin J Eng, 2020, 42(5): 645
    [34]
    邵鑫, 杨建平, 王柏琳, 等. 炼钢−连铸区段多工序运行协同控制. 钢铁, 2021, 56(8):101

    Shao X, Yang J P, Wang B L, et al. Cooperative control of multi-process operation in steelmaking-continuous casting section. Iron Steel, 2021, 56(8): 101
    [35]
    Yang J P, Liu Q, Guo W D, et al. Quantitative evaluation of multi-process collaborative operation in steelmaking-continuous casting sections. Int J Miner Metall Mater, 2021, 28(8): 1353 doi: 10.1007/s12613-020-2227-5
    [36]
    穆衍清, 尹佳, 谢飞鸣, 等. 特殊钢厂炉机匹配研究. 北京科技大学学报, 2013, 35(1):126

    Mu Y Q, Yin J, Xie F M, et al. Research on matching between furnaces and casters in special steel plants. J Univ Sci Technol Beijing, 2013, 35(1): 126
    [37]
    Yang J P, Wang B L, Liu Q, et al. Scheduling model for the practical steelmaking-continuous casting production and heuristic algorithm based on the optimization of “furnace-caster matching” mode. ISIJ Int, 2020, 60(6): 1213 doi: 10.2355/isijinternational.ISIJINT-2019-423
    [38]
    徐兆俊, 郑忠, 高小强. 炼钢连铸生产调度的优先级策略混合遗传算法. 控制与决策, 2016, 31(8):1394

    Xu Z J, Zheng Z, Gao X Q. HGA combined with priority strategy for production planning of steelmaking-continuous casting. Control Decis, 2016, 31(8): 1394
    [39]
    刘光航, 李铁克. 炼钢−连铸生产调度模型及启发式算法. 系统工程, 2002, 20(6):44 doi: 10.3969/j.issn.1001-4098.2002.06.009

    Liu G H, Li T K. A steelmaking-continuous casting production scheduling model and its heuristic algorithm. Syst Eng, 2002, 20(6): 44 doi: 10.3969/j.issn.1001-4098.2002.06.009
    [40]
    尹佳. 中小转炉流程LF的合理配置及其对生产运行的影响研究[学位论文]. 北京: 北京科技大学, 2007

    Yin J. The Rational Arrangement of Ladle Furnace of the Medium and Small Sized Converters Process and its Influence to Production [Dissertation]. Beijing: University of Science and Technology Beijing, 2007
    [41]
    刘青, 赵平, 吴晓东, 等. 钢包的运行控制. 北京科技大学学报, 2005, 27(2):235 doi: 10.3321/j.issn:1001-053X.2005.02.025

    Liu Q, Zhao P, Wu X D, et al. Control strategy for ladle running. J Univ Sci Technol Beijing, 2005, 27(2): 235 doi: 10.3321/j.issn:1001-053X.2005.02.025
    [42]
    洪宇杰, 杨建平, 刘青, 等. 离线烘烤钢包数量计算模型建立. 钢铁研究学报, 2021, 33(3):209

    Hong Y J, Yang J P, Liu Q, et al. Establishment of calculation model for number of offline baked steel ladle. J Iron Steel Res, 2021, 33(3): 209
    [43]
    余相灼. 炼钢厂钢包运行优化与仿真模拟研究[学位论文]. 北京: 北京科技大学, 2019

    Yu X Z. Research on Optimization and Simulation of Ladle Operation in Steelmaking Plant [Dissertation]. Beijing: University of Science and Technology Beijing, 2019
    [44]
    Torreño A, Sapena Ó, Onaindia E. FMAP: A platform for the development of distributed multi-agent planning systems. Knowl Based Syst, 2018, 145: 166 doi: 10.1016/j.knosys.2018.01.013
    [45]
    Ren W, Beard R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans Autom Control, 2005, 50(5): 655 doi: 10.1109/TAC.2005.846556
    [46]
    王彬. 长材型特殊钢厂炼钢−连铸过程生产计划优化与协同调度[学位论文]. 北京: 北京科技大学, 2015

    Wang B. Optimal Planning and Collaborative Scheduling on Steelmaking-Continuous Casting Process in Special Steel Plantsof Long Products [Dissertation]. Beijing: University of Science and Technology Beijing, 2015
    [47]
    刘青, 王彬, 汪宙, 等. 高品质钢炼钢−连铸过程的精益制造. 连铸, 2016, 41(3):1

    Liu Q, Wang B, Wang Z, et al. Fine manufacturing for steelmaking-continuous casting process of high quality steel. Continuous Cast, 2016, 41(3): 1
    [48]
    Liu Q, Wang B, Wang Z, et al. Fine production in steelmaking plants. Mater Today Proc, 2015, 2: S348 doi: 10.1016/j.matpr.2015.05.049
  • Cited by

    Periodical cited type(11)

    1. Xin Shao,Qing Liu,Zicheng Xin,Jiangshan Zhang,Tao Zhou,Shaoshuai Li. Hybrid model for BOF oxygen blowing time prediction based on oxygen balance mechanism and deep neural network. International Journal of Minerals, Metallurgy and Materials. 2024(01): 106-117 .
    2. 和炳昶,信自成,张江山,吴军,李立民,刘青. LF精炼炉双孔差流量底吹模式优化物理模拟. 工业加热. 2024(03): 20-26 .
    3. 杨建平,高攀,姚柳洁,白雪峰,孙亮,王顺国,赵晓东,韩伟刚. 基于流程仿真的炼钢-连铸区段运行效率分析. 钢铁. 2024(10): 141-152+163 .
    4. Zicheng Xin,Jiangshan Zhang,Kaixiang Peng,Junguo Zhang,Chunhui Zhang,Jun Wu,Bo Zhang,Qing Liu. Explainable machine learning model for predicting molten steel temperature in the LF refining process. International Journal of Minerals, Metallurgy and Materials. 2024(12): 2657-2669 .
    5. 陈博,邵鑫,张江山,高山,李宏辉,刘青. 基于“炉–机对应”的炼钢–连铸排产灰狼优化算法. 工程科学与技术. 2024(06): 73-81 .
    6. 贺东风,李晓龙,郭旺,郭园征,冯凯,杨日辉,杜程亮,张立东. 基于预定和预测相结合的钢水温度在线调控系统. 中国冶金. 2024(12): 74-83 .
    7. 卢春苗,李冰,肖涛,李亚民,孙彦广,梁青艳,潘俊. 基于界面协同的炼钢-连铸动态调度系统设计与应用. 中国冶金. 2024(12): 102-109 .
    8. 王健全,马彰超,孙雷,张超一,李卫. 工业网络体系架构的演进、关键技术及未来展望. 工程科学学报. 2023(08): 1376-1389 . 本站查看
    9. 洪宇杰,蒲春雷,高心宇,赵贵州. 炼钢厂离线烘烤钢包智能管理系统. 绿色矿冶. 2023(05): 15-22 .
    10. 陈虹志,邵鑫,刘青,张江山,高山. 基于订单扰动的炼钢-连铸区段Q-learning遗传优化重调度模型. 钢铁. 2023(11): 90-99 .
    11. 刘晓朦,刘青,邵鑫,高山,王忠刚. 基于产品结构的炼钢-连铸区段生产运行模式仿真优化. 冶金自动化. 2022(05): 112-122 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (2209) PDF downloads (105) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return