WANG Kai, PEI Xiao-dong, YANG Tao, CHEN Rui-ding, HAO Hai-qing, JIANG Shu-guang, SUN Yong. Study on intelligent ventilation linkage control theory and supply–demand matching experiment in mines[J]. Chinese Journal of Engineering, 2023, 45(7): 1214-1224. DOI: 10.13374/j.issn2095-9389.2022.05.05.003
Citation: WANG Kai, PEI Xiao-dong, YANG Tao, CHEN Rui-ding, HAO Hai-qing, JIANG Shu-guang, SUN Yong. Study on intelligent ventilation linkage control theory and supply–demand matching experiment in mines[J]. Chinese Journal of Engineering, 2023, 45(7): 1214-1224. DOI: 10.13374/j.issn2095-9389.2022.05.05.003

Study on intelligent ventilation linkage control theory and supply–demand matching experiment in mines

More Information
  • Corresponding author:

    YANG Tao, E-mail: yaotang585@163.com

  • Received Date: May 04, 2022
  • Available Online: August 28, 2022
  • Published Date: July 24, 2023
  • To determine the dynamic matching of a mine ventilation system to onsite demands of automatic adjustment, we analyze the principle of air volume supply and demand matching and a linkage control method. Subsequently, we establish a mathematical model of main ventilator frequency adjustment, associate branch resistance adjustment, and joint adjustment with multi-feature fusion. We also propose a matching regulation model and a stability determination method for a ventilation network’s branch supply and demand. Based on the monitoring of harmful gases, intelligent emergency control software is developed by a mine ventilation supply and demand model. We realize the automatic calculation of the best working frequency of a ventilator when an unbalanced supply and ventilation demand is selected for frequency conversion adjustment. When selecting the associated branch wind resistance adjustment, we use a cellular automata model to calculate the optimal adjustment roadway. We obtain the adjusted wind resistance value using a winding network inversion calculation model. When a single adjustment method fails, a joint control scheme of fan frequency conversion and branch resistance adjustment is generated. A reliable adjustment of air volume supply and demand matching is realized through an advanced simulation analysis of the air network. A typical mine ventilation system is used to establish an experimental model for the automatic adjustment of the air demand of a branch of a winding network. The air demand adjustment and dilution experiment are carried out with the statistical law of onsite gas overrun as the guidance model of branch air demand control. The following results are obtained. The branch air volume changes according to the adjustment theory model under three adjustment methods. Further, the CO2 concentration change is evidently delayed in the air adjustment process. In the process of fan frequency conversion regulation, the air volume of each branch of the air network changes according to the ventilation network sensitivity, and the fluctuation of the air network is minimal. When a single associated branch resistance adjustment method is used to regulate the wind, the local wind network has great influence on air volume and thus fluctuates greatly. When the fan frequency and associated branch wind resistance are combined, the fluctuation of the branch air volume of the entire air network is the largest, and the system stability and security are the lowest. Therefore, the fan frequency and combined regulation methods of multiple associated branches are recommended to use in practical applications of mines. The experiment verified the practicability and feasibility of the deviation of mine ventilation supply and demand from intelligent control systems. It also provided theoretical and application guidance for mine ventilation linkage control.
  • [1]
    王国法, 刘峰, 庞义辉, 等. 煤矿智能化——煤炭工业高质量发展的核心技术支撑. 煤炭学报, 2019, 44(2):349 doi: 10.13225/j.cnki.jccs.2018.2041

    Wang G F, Liu F, Pang Y H, et al. Coal mine intellectualization: The core technology of high quality development. J China Coal Soc, 2019, 44(2): 349 doi: 10.13225/j.cnki.jccs.2018.2041
    [2]
    Wang K, Jiang S G, Wu Z Y, et al. Intelligent safety adjustment of branch airflow volume during ventilation-on-demand changes in coal mines. Process Saf Environ Prot, 2017, 111: 491 doi: 10.1016/j.psep.2017.08.024
    [3]
    裴晓东, 王凯, 李晓伟, 等. 基于元胞自动机的集约化矿井调风模型分析与仿真. 中国矿业大学学报, 2017, 46(4):755 doi: 10.13247/j.cnki.jcumt.000697

    Pei X D, Wang K, Li X W, et al. Analysis and simulation of intensive mine air regulation model based on cellular automaton. J China Univ Min &Technol, 2017, 46(4): 755 doi: 10.13247/j.cnki.jcumt.000697
    [4]
    魏连江, 周福宝, 梁伟, 等. 矿井通风网络特征参数关联性研究. 煤炭学报, 2016, 41(7):1728

    Wei L J, Zhou F B, Liang W, et al. Correlation of mine ventilation network characteristic parameters. J China Coal Soc, 2016, 41(7): 1728
    [5]
    黄光球, 孙鹏, 陆秋琴. 风窗对井下通风系统的影响及其调节与定位优化. 中国安全生产科学技术, 2014, 10(3):160 doi: 10.11731/j.issn.1673-193x.2014.03.028

    Huang G Q, Sun P, Lu Q Q. Influence of air windows on underground ventilation system and its adjusting and locating optimization. J Saf Sci Technol, 2014, 10(3): 160 doi: 10.11731/j.issn.1673-193x.2014.03.028
    [6]
    李伟. 全断面通道式自动风窗研究与应用. 工矿自动化, 2016, 42(12):15

    Li W. Research of automatic passageway type air regulator with full section and its application. Ind Mine Autom, 2016, 42(12): 15
    [7]
    卢新明. 矿井通风智能化技术研究现状与发展方向. 煤炭科学技术, 2016, 44(7):47

    Lu X M. Study status and development orientation of mine ventilation intelligent technology. Coal Sci Technol, 2016, 44(7): 47
    [8]
    吴奉亮, 高佳南, 常心坦, 等. 矿井风网雅可比矩阵对称特性及并行求解模型. 煤炭学报, 2016, 41(6):1454

    Wu F L, Gao J N, Chang X T, et al. Symmetry property of Jacobian matrix of mine ventilation network and its parallel calculation model. J China Coal Soc, 2016, 41(6): 1454
    [9]
    刘剑, 李雪冰, 宋莹, 等. 无外部扰动的均直巷道风速和风压测不准机理实验研究. 煤炭学报, 2016, 41(6):1447

    Liu J, Li X B, Song Y, et al. Experimental study on uncertainty mechanism of mine airvelocity and pressure with non-external disturbance. J China Coal Soc, 2016, 41(6): 1447
    [10]
    刘剑, 郭欣, 邓立军, 等. 基于风量特征的矿井通风系统阻变型单故障源诊断. 煤炭学报, 2018, 43(1):143

    Liu J, Guo X, Deng L J, et al. Resistance variant single fault source diagnosis of mine ventilation system based on air volume characteristic. J China Coal Soc, 2018, 43(1): 143
    [11]
    方博, 马恒. 运用监控数据的矿井通风网络动态解算及应用. 辽宁工程技术大学学报(自然科学版), 2016, 35(12):1439 doi: 10.11956/j.issn.1008-0562.2016.12.010

    Fang B, Ma H. Mine ventilation network application monitoring database and application dynamic solver. J Liaoning Tech Univ Nat Sci, 2016, 35(12): 1439 doi: 10.11956/j.issn.1008-0562.2016.12.010
    [12]
    李雨成, 李俊桥, 邓存宝, 等. 基于角联子网的风量反演风阻病态改良算法. 煤炭学报, 2019, 44(4):1147 doi: 10.13225/j.cnki.jccs.2018.0741

    Li Y C, Li J Q, Deng C B, et al. Improved algorithm of air quantity calculating resistance based on diagonal subnetwork. J China Coal Soc, 2019, 44(4): 1147 doi: 10.13225/j.cnki.jccs.2018.0741
    [13]
    Suvar M C, Lupu C, Arad V, et al. Computerized simulation of mine ventilation networks for sustainable decision making process. Environ Eng Manag J, 2014, 13(6): 1445 doi: 10.30638/eemj.2014.159
    [14]
    Widiatmojo A, Sasaki K, Sugai Y, et al. Assessment of air dispersion characteristic in underground mine ventilation: Field measurement and numerical evaluation. Process Saf Environ Prot, 2015, 93: 173 doi: 10.1016/j.psep.2014.04.001
    [15]
    Nel A J H, Arndt D C, Vosloo J C, et al. Achieving energy efficiency with medium voltage variable speed drives for ventilation-on-demand in South African mines. J Clean Prod, 2019, 232: 379 doi: 10.1016/j.jclepro.2019.05.376
    [16]
    Chatterjee A, Zhang L J, Xia X H. Optimization of mine ventilation fan speeds according to ventilation on demand and time of use tariff. Appl Energy, 2015, 146: 65 doi: 10.1016/j.apenergy.2015.01.134
    [17]
    张卅卅, 任高峰, 张聪瑞, 等. 深部开采矿井通风智能感知及风机远程集中安全监控系统. 武汉理工大学学报, 2015, 37(1):104

    Zhang S S, Ren G F, Zhang C R, et al. Intellisense and remote centralized security monitoring system for the ventilation system in deep mining. J Wuhan Univ Technol, 2015, 37(1): 104
    [18]
    陈赞成, 杨鹏, 吕文生, 等. 高寒矿井穿脉巷道掘进炮烟扩散规律的数值模拟. 北京科技大学学报, 2011, 33(5):521 doi: 10.13374/j.issn1001-053x.2011.05.003

    Chen Z C, Yang P, Lü W S, et al. Numerical simulation on the diffusion law of blasting fume during roadway tunneling across a vein in an alpine mine. J Univ Sci Technol Beijing, 2011, 33(5): 521 doi: 10.13374/j.issn1001-053x.2011.05.003
    [19]
    郭对明, 李国清, 胡乃联, 等. 基于文本挖掘的矿山安全隐患大数据分析与可视化. 工程科学学报, 2022, 44(3):328 doi: 10.3321/j.issn.1001-053X.2022.3.bjkjdxxb202203002

    Guo D M, Li G Q, Hu N L, et al. Big data analysis and visualization of potential hazardous risks of the mine based on text mining. Chin J Eng, 2022, 44(3): 328 doi: 10.3321/j.issn.1001-053X.2022.3.bjkjdxxb202203002
    [20]
    张庆华. 我国煤矿通风技术与装备发展现状及展望. 煤炭科学技术, 2016, 44(6):146 doi: 10.13199/j.cnki.cst.2016.06.024

    Zhang Q H. Development and prospect of mine ventilation technology and equipment. Coal Sci Technol, 2016, 44(6): 146 doi: 10.13199/j.cnki.cst.2016.06.024
    [21]
    王国法, 王虹, 任怀伟, 等. 智慧煤矿2025情景目标和发展路径. 煤炭学报, 2018, 43(2):295 doi: 10.13225/j.cnki.jccs.2018.0152

    Wang G F, Wang H, Ren H W, et al. 2025 scenarios and development path of intelligent coal mine. J China Coal Soc, 2018, 43(2): 295 doi: 10.13225/j.cnki.jccs.2018.0152
    [22]
    郭奇峰, 蔡美峰, 吴星辉, 等. 面向2035年的金属矿深部多场智能开采发展战略. 工程科学学报, 2022, 44(4):476 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204002

    Guo Q F, Cai M F, Wu X H, et al. Technological strategies for intelligent mining subject to multifield couplings in deep metal mines toward 2035. Chin J Eng, 2022, 44(4): 476 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204002
    [23]
    Chen K Y, Si J H, Zhou F B, et al. Optimization of air quantity regulation in mine ventilation networks using the improved differential evolution algorithm and critical path method. Int J Min Sci Technol, 2015, 25(1): 79 doi: 10.1016/j.ijmst.2014.11.001
    [24]
    李翠平, 胡磊, 侯定勇, 等. 基于元胞自动机的井巷火灾仿真. 北京科技大学学报, 2013, 35(12):1546 doi: 10.13374/j.issn1001-053x.2013.12.006

    Li C P, Hu L, Hou D Y, et al. Cellular automata-based tunnel fire simulation. J Univ Sci Technol Beijing, 2013, 35(12): 1546 doi: 10.13374/j.issn1001-053x.2013.12.006
    [25]
    司俊鸿, 陈开岩. 基于Tikhonov正则化的矿井通风网络测风求阻法. 煤炭学报, 2012, 37(6):994 doi: 10.13225/j.cnki.jccs.2012.06.025

    Si J H, Chen K Y. Measuring airflow & evaluating resistance model of the mine ventilation network based on Tikhonov regularization. J China Coal Soc, 2012, 37(6): 994 doi: 10.13225/j.cnki.jccs.2012.06.025
    [26]
    周福宝, 魏连江, 夏同强, 等. 矿井智能通风原理、关键技术及其初步实现. 煤炭学报, 2020, 45(6):2225 doi: 10.13225/j.cnki.jccs.zn20.0338

    Zhou F B, Wei L J, Xia T Q, et al. Principle, key technology and preliminary realization of mine intelligent ventilation. J China Coal Soc, 2020, 45(6): 2225 doi: 10.13225/j.cnki.jccs.zn20.0338
    [27]
    Wang K, Jiang S G, Ma X P, et al. Abnormal gas emission in coal mines and a method for its dilution using ventilator control. J Nat Gas Sci Eng, 2016, 33: 355 doi: 10.1016/j.jngse.2016.05.021
  • Cited by

    Periodical cited type(8)

    1. 张鹏云. 矿井通风机智能化管控技术研究. 能源与节能. 2025(01): 184-186+190 .
    2. 安学东,马腾,王光明,马强. 伊新煤业矿井智能通风关键技术研究. 陕西煤炭. 2025(04): 148-154 .
    3. 张浪,刘彦青. 矿井智能通风与关键技术研究. 煤炭科学技术. 2024(01): 178-195 .
    4. 钟彬,张小刚,王磊,王耀强. 矿井通风系统智能化改造及其应用. 矿山机械. 2024(03): 56-60 .
    5. 吴奉亮,寇露. 用于矿井通风网络解算的通风机风压性能曲线自动识别方法. 工矿自动化. 2024(04): 103-111 .
    6. 钟德云,文历学,王李管. 基于混合整数规划的风流两步骤调控优化方法. 黄金科学技术. 2024(02): 356-365 .
    7. 张虎平,姜坤坤,宋俊,蔚文朋,李向忠,田彦生,董良,代伟. 模型失配下的浅槽分选悬浮液调配过程预测控制. 洁净煤技术. 2024(S2): 743-748 .
    8. 李全,宋宇航. 矿井智能通风实时监测与自动控制系统建设. 山东煤炭科技. 2024(11): 117-121+126 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (1625) PDF downloads (107) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return