ZHANG Ying, GUO Qi-feng, XI Xun, CAI Mei-feng, LUN Jia-yun, PAN Ji-liang. Experimental investigation on hydromechanical coupling-induced failure and permeability evolution for sandstone with multiple-shape prefabricated fractures[J]. Chinese Journal of Engineering, 2022, 44(10): 1778-1788. DOI: 10.13374/j.issn2095-9389.2022.07.04.004
Citation: ZHANG Ying, GUO Qi-feng, XI Xun, CAI Mei-feng, LUN Jia-yun, PAN Ji-liang. Experimental investigation on hydromechanical coupling-induced failure and permeability evolution for sandstone with multiple-shape prefabricated fractures[J]. Chinese Journal of Engineering, 2022, 44(10): 1778-1788. DOI: 10.13374/j.issn2095-9389.2022.07.04.004

Experimental investigation on hydromechanical coupling-induced failure and permeability evolution for sandstone with multiple-shape prefabricated fractures

More Information
  • Corresponding author:

    XI Xun, E-mail: xixun@ustb.edu.cn

  • Received Date: July 03, 2022
  • Available Online: August 17, 2022
  • Published Date: October 24, 2022
  • In mineral and geothermal resource co-mining, the underground rock is often affected by mining stress, and fractures of different shapes, such as single fractures, T-shaped fractures, and Y-shaped fractures, are generated. To increase the reservoir permeability, the existing fractures need to be reactivated, causing them to expand under force and propagate in shear and tension modes, generating new fractures and finally forming a fracture network to increase permeability. Waterjet cutting and wire cutting equipment are used to prefabricate sandstone samples with different inclinations and single, T-shaped, and Y-shaped fractures on standard samples. This paper conducts hydromechanical coupling experiments to investigate the possibility of increasing permeability by expanding and merging fractures in prefabricated fractured sandstone samples under triaxial conditions. In addition, the focus is on mechanical properties, such as critical thresholds (crack closure stress, crack initiation stress, damage stress, and peak strength), elastic moduli, and Poisson's ratio, and the failure modes of multiple-shape prefabricated fracture sandstone samples are mainly studied. Simultaneously, the evolution law of acoustic emission and permeability during the progressive failure of fractured rock is studied, and the mechanism of permeability enhancement of fractured rocks under the action of hydraulic coupling is analyzed. The results show that under the action of hydromechanical coupling, all multi-shape prefabricated fracture specimens form secondary cracks that expand in tensile, shearing, or mixed modes through the existing fractures and generate new fractures or fracture networks, which can effectively increase the flow rate. All single-fracture specimens are shear failures, and the T-shaped and Y-shaped fracture specimens have two types of shear failure and tension-shear failure. Furthermore, the weakening effect of water has a smaller effect on strength than the effect of multiple-shape prefabricated fractures. With increasing axial pressure, the rock permeability first decreases and then increases in the pre-peak stage, and the jump coefficient increases when reaching the strength failure. When the stress suddenly drops after the peak of the sample, the permeability reaches the maximum value, and the permeability enhancement effect is the best. The change in the prefabricated fracture angles and shapes has a small influence on the jump coefficient. The average value of the jump coefficients of a single fracture is larger than that of a Y-shaped fracture, which is larger than that of a T-shaped fracture, and the jump coefficients are more than doubled. These observational and experimental results will help to understand fracture failure and fluid flow behavior, which will guide the engineering applications of mineral and geothermal resource co-mining.
  • [1]
    蔡美峰, 多吉, 陈湘生, 等. 深部矿产和地热资源共采战略研究. 中国工程科学, 2021, 23(6):43

    Cai M F, Duo J, Chen X S, et al. Development strategy for co-mining of the deep mineral and geothermal resources. Strateg Study CAE, 2021, 23(6): 43
    [2]
    宋健, 唐春安, 亢方超. 深部矿产与地热资源协同开采模式. 金属矿山, 2020(5):124

    Song J, Tang C A, Kang F C. Synergetic mining mode of deep mineral and geothermal resources. Met Mine, 2020(5): 124
    [3]
    李长辉. 地热资源类型及发展前景. 青海国土经略, 2014(4):48 doi: 10.3969/j.issn.1671-8704.2014.04.019

    Li C H. Types and development prospects of geothermal resources. Manage Strategy Qinghai Land Resour, 2014(4): 48 doi: 10.3969/j.issn.1671-8704.2014.04.019
    [4]
    周总瑛, 刘世良, 刘金侠. 中国地热资源特点与发展对策. 自然资源学报, 2015, 30(7):1210 doi: 10.11849/zrzyxb.2015.07.013

    Zhou Z Y, Liu S L, Liu J X. Study on the characteristics and development strategies of geothermal resources in China. J Nat Resour, 2015, 30(7): 1210 doi: 10.11849/zrzyxb.2015.07.013
    [5]
    王贵玲, 张薇, 梁继运, 等. 中国地热资源潜力评价. 地球学报, 2017, 38(4):449 doi: 10.3975/cagsb.2017.04.02

    Wang G L, Zhang W, Liang J Y, et al. Evaluation of geothermal resources potential in China. Acta Geosci Sin, 2017, 38(4): 449 doi: 10.3975/cagsb.2017.04.02
    [6]
    王转转, 欧成华, 王红印, 等. 国内地热资源类型特征及其开发利用进展. 水利水电技术, 2019, 50(6):187

    Wang Z Z, Ou C H, Wang H Y, et al. The characteristics and development of geothermal resources in China. Water Resour Hydropower Eng, 2019, 50(6): 187
    [7]
    Brace W F, Bombolakis E G. A note on brittle crack growth in compression. J Geophys Res, 1963, 68(12): 3709 doi: 10.1029/JZ068i012p03709
    [8]
    Nemat-Nasser S, Horii H. Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst. J Geophys Res Solid Earth, 1982, 87(B8): 6805 doi: 10.1029/JB087iB08p06805
    [9]
    Ashby M F, Hallam S D. The failure of brittle solids containing small cracks under compressive stress states. Acta Metall, 1986, 34(3): 497 doi: 10.1016/0001-6160(86)90086-6
    [10]
    Cannon N P, Schulson E M, Smith T R, et al. Wing cracks and brittle compressive fracture. Acta Metall Mater, 1990, 38(10): 1955 doi: 10.1016/0956-7151(90)90307-3
    [11]
    黄梅, 肖桃李. 单轴压缩条件下预制单裂隙类岩石的力学和变形特性研究. 长江大学学报(自然科学版), 2020, 17(1):115

    Huang M, Xiao T L. Mechanical and deformation characteristics of prefabricated single-fracture rock-like under uniaxial compression. J Yangtze Univ Nat Sci Ed, 2020, 17(1): 115
    [12]
    韩震宇, 李地元, 朱泉企, 等. 含端部裂隙大理岩单轴压缩破坏及能量耗散特性. 工程科学学报, 2020, 42(12):1588

    Han Z Y, Li D Y, Zhu Q Q, et al. Uniaxial compression failure and energy dissipation of marble specimens with flaws at the end surface. Chin J Eng, 2020, 42(12): 1588
    [13]
    郭奇峰, 武旭, 蔡美峰, 等. 预制裂隙花岗岩的强度特征与破坏模式试验. 工程科学学报, 2019, 41(1):43

    Guo Q F, Wu X, Cai M F, et al. Experiment on the strength characteristics and failure modes of granite with pre-existing cracks. Chin J Eng, 2019, 41(1): 43
    [14]
    张杰, 郭奇峰, 蔡美峰, 等. 循环扰动荷载作用下花岗岩中裂隙萌生扩展过程的颗粒流模拟. 工程科学学报, 2021, 43(5):636

    Zhang J, Guo Q F, Cai M F, et al. Particle flow simulation of the crack propagation characteristics of granite under cyclic load. Chin J Eng, 2021, 43(5): 636
    [15]
    Lee H, Jeon S. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. Int J Solids Struct, 2011, 48(6): 979 doi: 10.1016/j.ijsolstr.2010.12.001
    [16]
    Modiriasari A, Bobet A, Pyrak-Nolte L J. Monitoring rock damage caused by cyclic loading using seismic wave transmission and reflection // Proceedings of 50th U. S. Rock Mechanics/Geomechanics Symposium. Houston, 2016: 569
    [17]
    Petit J P, Barquins M. Can natural faults propagate under Mode II conditions? Tectonics, 1988, 7(6): 1243
    [18]
    Bobet A, Einstein H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci, 1998, 35(7): 863 doi: 10.1016/S0148-9062(98)00005-9
    [19]
    Saimoto A, Nisitani H. Crack propagation criterion and simulation under biaxial loading[J/OL]. WTI Press (2002-09-25)[2022-07-04].https://www.witpress.com/Secure/elibrary/papers/DM02/DM02009FU.pdf
    [20]
    Mughieda O, Karasneh I. Coalescence of offset rock joints under biaxial loading. Geotech Geol Eng, 2006, 24(4): 985 doi: 10.1007/s10706-005-8352-0
    [21]
    Liu X W, Liu Q S, Huang S B, et al. Fracture propagation characteristic and micromechanism of rock-like specimens under uniaxial and biaxial compression. Shock Vib, 2016, 2016: 1
    [22]
    Yang S Q, Jiang Y Z, Xu W Y, et al. Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression. Int J Solids Struct, 2008, 45(17): 4796 doi: 10.1016/j.ijsolstr.2008.04.023
    [23]
    Huang D, Gu D M, Yang C, et al. Investigation on mechanical behaviors of sandstone with two preexisting flaws under triaxial compression. Rock Mech Rock Eng, 2016, 49(2): 375 doi: 10.1007/s00603-015-0757-3
    [24]
    赵程, 幸金权, 牛佳伦, 等. 水-力共同作用下预制裂隙类岩石试样裂纹扩展试验研究. 岩石力学与工程学报, 2019, 38(S1): 2823

    Zhao C, Xing J Q, Niu J L, et al. Experimental study on crack propagation of precrack rock-like specimens under hydro-mechanical coupling. Chin J Rock Mech Eng, 2019, 38(Suppl 1): 2823
    [25]
    李勇, 蔡卫兵, 朱维申, 等. 水力耦合作用下裂纹扩展演化机理的试验和颗粒流分析. 工程科学与技术, 2020, 52(3):21

    Li Y, Cai W B, Zhu W S, et al. Experiment and particle flow analysis of crack propagation evolution mechanism under hydraulic coupling. Adv Eng Sci, 2020, 52(3): 21
    [26]
    魏超, 朱维申, 李勇, 等. 岩石倾斜裂隙与水平裂隙扩展贯通试验及数值模拟研究. 岩土力学, 2019, 40(11):4533

    Wei C, Zhu W S, Li Y, et al. Experimental study and numerical simulation of inclined flaws and horizontal fissures propagation and coalescence process in rocks. Rock Soil Mech, 2019, 40(11): 4533
    [27]
    Min K S, Zhang Z, Ghassemi A. Numerical analysis of multiple fracture propagation in heterogeneous rock // Proceedings of 44th U. S. Rock Mechanics Symposium and 5th U. S. -Canada Rock Mechanics Symposium. Salt Lake City, 2010: 363
    [28]
    Kamali A, Ghassemi A. Analysis of injection-induced shear slip and fracture propagation in geothermal reservoir stimulation. Geothermics, 2018, 76: 93 doi: 10.1016/j.geothermics.2018.07.002
    [29]
    Yang Y N, Ren X Y, Zhou L, et al. Numerical study on competitive propagation of multi-perforation fractures considering full hydro-mechanical coupling in fracture-pore dual systems. J Petroleum Sci Eng, 2020, 191: 107109 doi: 10.1016/j.petrol.2020.107109
    [30]
    Kamali A, Ghassemi A. Analysis of natural fracture shear slip and propagation in response to injection // Proceedings of Stanford Geothermal Workshop. Stanford, 2016: 22
    [31]
    张铭. 低渗透岩石实验理论及装置. 岩石力学与工程学报, 2003, 22(6):919 doi: 10.3321/j.issn:1000-6915.2003.06.007

    Zhang M. Theory and apparatus for testing low-permeability of rocks in laboratory. Chin J Rock Mech Eng, 2003, 22(6): 919 doi: 10.3321/j.issn:1000-6915.2003.06.007
    [32]
    王鹏飞, 李长洪, 马学文, 等. 断层带不同含石率土石混合体渗流特性试验研究. 岩土力学, 2018, 39(S2): 53

    Wang P F, Li C H, Ma X W, et al. Experimental study of seepage characteristics of soil-rock mixture with different rock contents in fault zone. Rock Soil Mech, 2018, 39(Suppl 2): 53
    [33]
    Zhang Y, Wu X, Guo Q F, et al. Research on the mechanical properties and damage constitutive model of multi-shape fractured sandstone under hydro-mechanical coupling. Minerals, 2022, 12(4): 436 doi: 10.3390/min12040436
  • Related Articles

    [1]GUO De-yong, ZHANG Chao, ZHU Tong-gong. Effect of in-situ stress on the cracking and permeability enhancement in coal seams by deep-hole cumulative blasting[J]. Chinese Journal of Engineering, 2022, 44(11): 1832-1843. DOI: 10.13374/j.issn2095-9389.2022.01.25.003
    [2]YE Qing, SONG Jie, HOU Kun, GUO Zhi-yuan, XU Gui-zhi, DENG Zhan-feng, LI Bao-rang. Review of hydrogen permeation in PEM water electrolysis[J]. Chinese Journal of Engineering, 2022, 44(7): 1274-1281. DOI: 10.13374/j.issn2095-9389.2021.08.02.003
    [3]WANG Shuai, YU Qing-lei, WANG Ling. Effect of fracture roughness on permeability coefficient under uniaxial compression[J]. Chinese Journal of Engineering, 2021, 43(7): 915-924. DOI: 10.13374/j.issn2095-9389.2020.05.26.001
    [4]ZHANG Yu, YU Ting-ting, ZHANG Tong, LIU Shu-yan, ZHOU Jia-wen. Experimental study of the permeability evolution of fractured mudstone under complex stress paths[J]. Chinese Journal of Engineering, 2021, 43(7): 903-914. DOI: 10.13374/j.issn2095-9389.2020.05.27.005
    [5]ZHAO Hong-gang, ZHANG Dong-ming, BIAN Guang, LI Wen-pu. Deformation and permeability of sandstone at different cycling loading-unloading rates[J]. Chinese Journal of Engineering, 2017, 39(1): 133-140. DOI: 10.13374/j.issn2095-9389.2017.01.017
    [6]ZHAO Hong-gang, ZHANG Dong-ming, LIU Chao, DENG Bo-zhi, BIAN Guang, LI Wen-pu. Mechanical characteristics and permeability evolution rule of coal under loading-unloading conditions[J]. Chinese Journal of Engineering, 2016, 38(12): 1674-1680. DOI: 10.13374/j.issn2095-9389.2016.12.003
    [7]WANG Zhi-ping, ZHU Wei-yao, YUE Ming, GAO Ying, ZHAO Guang-jie, WANG Hai-qing. A method to predict the production of fractured horizontal wells in low/ultra-low permeability reservoirs[J]. Chinese Journal of Engineering, 2012, 34(7): 750-754. DOI: 10.13374/j.issn1001-053x.2012.07.001
    [8]LI Zhang-hong, ZHANG Li-xin, YAO Zuo-qiang, ZHANG Ji-liang, MIAO Sheng-jun. Permeability characteristics experiment and its mechanism analysis of two types of rocks[J]. Chinese Journal of Engineering, 2010, 32(2): 158-163. DOI: 10.13374/j.issn1001-053x.2010.02.022
    [9]WANG Ming, ZHU Wei-yao, LIU He, ZHANG Yu-guang, SONG Hong-qing. Theoretical analysis of two-phase porous flow in low-permeability oil reservoirs in a five-spot pattern[J]. Chinese Journal of Engineering, 2009, 31(12): 1511-1515,1530. DOI: 10.13374/j.issn1001-053x.2009.12.004
    [10]WANG Jinan, PENG Suping, MENG Zhaoping. Permeability Rule in Full Strain-stress Process of Rock under Triaxial Compression[J]. Chinese Journal of Engineering, 2001, 23(6): 489-491. DOI: 10.13374/j.issn1001-053x.2001.06.001
  • Cited by

    Periodical cited type(4)

    1. 王丹丹,党志伟,石哲伟,方惠明,苏杰,刘春宇,霍超. 裂隙分布及井间距对增强型地热系统采热性能的影响. 地球物理学进展. 2024(03): 975-989 .
    2. 罗许林,王国柱,潘燕秋,石浩. 水力耦合作用下预制裂隙砂岩声发射试验研究. 实验技术与管理. 2024(10): 51-60 .
    3. 张吉雄,刘恒凤,周楠,闫浩,李百宜. 深部矿山相变蓄热功能充填采热构想及技术体系. 采矿与安全工程学报. 2023(05): 933-944 .
    4. 蔡美峰. 深部矿产与地热资源共采专刊序言. 工程科学学报. 2022(10): 1621-1622 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (1336) PDF downloads (68) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return