Citation: | ZHANG Ying, GUO Qi-feng, XI Xun, CAI Mei-feng, LUN Jia-yun, PAN Ji-liang. Experimental investigation on hydromechanical coupling-induced failure and permeability evolution for sandstone with multiple-shape prefabricated fractures[J]. Chinese Journal of Engineering, 2022, 44(10): 1778-1788. DOI: 10.13374/j.issn2095-9389.2022.07.04.004 |
[1] |
蔡美峰, 多吉, 陈湘生, 等. 深部矿产和地热资源共采战略研究. 中国工程科学, 2021, 23(6):43
Cai M F, Duo J, Chen X S, et al. Development strategy for co-mining of the deep mineral and geothermal resources. Strateg Study CAE, 2021, 23(6): 43
|
[2] |
宋健, 唐春安, 亢方超. 深部矿产与地热资源协同开采模式. 金属矿山, 2020(5):124
Song J, Tang C A, Kang F C. Synergetic mining mode of deep mineral and geothermal resources. Met Mine, 2020(5): 124
|
[3] |
李长辉. 地热资源类型及发展前景. 青海国土经略, 2014(4):48 doi: 10.3969/j.issn.1671-8704.2014.04.019
Li C H. Types and development prospects of geothermal resources. Manage Strategy Qinghai Land Resour, 2014(4): 48 doi: 10.3969/j.issn.1671-8704.2014.04.019
|
[4] |
周总瑛, 刘世良, 刘金侠. 中国地热资源特点与发展对策. 自然资源学报, 2015, 30(7):1210 doi: 10.11849/zrzyxb.2015.07.013
Zhou Z Y, Liu S L, Liu J X. Study on the characteristics and development strategies of geothermal resources in China. J Nat Resour, 2015, 30(7): 1210 doi: 10.11849/zrzyxb.2015.07.013
|
[5] |
王贵玲, 张薇, 梁继运, 等. 中国地热资源潜力评价. 地球学报, 2017, 38(4):449 doi: 10.3975/cagsb.2017.04.02
Wang G L, Zhang W, Liang J Y, et al. Evaluation of geothermal resources potential in China. Acta Geosci Sin, 2017, 38(4): 449 doi: 10.3975/cagsb.2017.04.02
|
[6] |
王转转, 欧成华, 王红印, 等. 国内地热资源类型特征及其开发利用进展. 水利水电技术, 2019, 50(6):187
Wang Z Z, Ou C H, Wang H Y, et al. The characteristics and development of geothermal resources in China. Water Resour Hydropower Eng, 2019, 50(6): 187
|
[7] |
Brace W F, Bombolakis E G. A note on brittle crack growth in compression. J Geophys Res, 1963, 68(12): 3709 doi: 10.1029/JZ068i012p03709
|
[8] |
Nemat-Nasser S, Horii H. Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst. J Geophys Res Solid Earth, 1982, 87(B8): 6805 doi: 10.1029/JB087iB08p06805
|
[9] |
Ashby M F, Hallam S D. The failure of brittle solids containing small cracks under compressive stress states. Acta Metall, 1986, 34(3): 497 doi: 10.1016/0001-6160(86)90086-6
|
[10] |
Cannon N P, Schulson E M, Smith T R, et al. Wing cracks and brittle compressive fracture. Acta Metall Mater, 1990, 38(10): 1955 doi: 10.1016/0956-7151(90)90307-3
|
[11] |
黄梅, 肖桃李. 单轴压缩条件下预制单裂隙类岩石的力学和变形特性研究. 长江大学学报(自然科学版), 2020, 17(1):115
Huang M, Xiao T L. Mechanical and deformation characteristics of prefabricated single-fracture rock-like under uniaxial compression. J Yangtze Univ Nat Sci Ed, 2020, 17(1): 115
|
[12] |
韩震宇, 李地元, 朱泉企, 等. 含端部裂隙大理岩单轴压缩破坏及能量耗散特性. 工程科学学报, 2020, 42(12):1588
Han Z Y, Li D Y, Zhu Q Q, et al. Uniaxial compression failure and energy dissipation of marble specimens with flaws at the end surface. Chin J Eng, 2020, 42(12): 1588
|
[13] |
郭奇峰, 武旭, 蔡美峰, 等. 预制裂隙花岗岩的强度特征与破坏模式试验. 工程科学学报, 2019, 41(1):43
Guo Q F, Wu X, Cai M F, et al. Experiment on the strength characteristics and failure modes of granite with pre-existing cracks. Chin J Eng, 2019, 41(1): 43
|
[14] |
张杰, 郭奇峰, 蔡美峰, 等. 循环扰动荷载作用下花岗岩中裂隙萌生扩展过程的颗粒流模拟. 工程科学学报, 2021, 43(5):636
Zhang J, Guo Q F, Cai M F, et al. Particle flow simulation of the crack propagation characteristics of granite under cyclic load. Chin J Eng, 2021, 43(5): 636
|
[15] |
Lee H, Jeon S. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. Int J Solids Struct, 2011, 48(6): 979 doi: 10.1016/j.ijsolstr.2010.12.001
|
[16] |
Modiriasari A, Bobet A, Pyrak-Nolte L J. Monitoring rock damage caused by cyclic loading using seismic wave transmission and reflection // Proceedings of 50th U. S. Rock Mechanics/Geomechanics Symposium. Houston, 2016: 569
|
[17] |
Petit J P, Barquins M. Can natural faults propagate under Mode II conditions? Tectonics, 1988, 7(6): 1243
|
[18] |
Bobet A, Einstein H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci, 1998, 35(7): 863 doi: 10.1016/S0148-9062(98)00005-9
|
[19] |
Saimoto A, Nisitani H. Crack propagation criterion and simulation under biaxial loading[J/OL]. WTI Press (2002-09-25)[2022-07-04].https://www.witpress.com/Secure/elibrary/papers/DM02/DM02009FU.pdf
|
[20] |
Mughieda O, Karasneh I. Coalescence of offset rock joints under biaxial loading. Geotech Geol Eng, 2006, 24(4): 985 doi: 10.1007/s10706-005-8352-0
|
[21] |
Liu X W, Liu Q S, Huang S B, et al. Fracture propagation characteristic and micromechanism of rock-like specimens under uniaxial and biaxial compression. Shock Vib, 2016, 2016: 1
|
[22] |
Yang S Q, Jiang Y Z, Xu W Y, et al. Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression. Int J Solids Struct, 2008, 45(17): 4796 doi: 10.1016/j.ijsolstr.2008.04.023
|
[23] |
Huang D, Gu D M, Yang C, et al. Investigation on mechanical behaviors of sandstone with two preexisting flaws under triaxial compression. Rock Mech Rock Eng, 2016, 49(2): 375 doi: 10.1007/s00603-015-0757-3
|
[24] |
赵程, 幸金权, 牛佳伦, 等. 水-力共同作用下预制裂隙类岩石试样裂纹扩展试验研究. 岩石力学与工程学报, 2019, 38(S1): 2823
Zhao C, Xing J Q, Niu J L, et al. Experimental study on crack propagation of precrack rock-like specimens under hydro-mechanical coupling. Chin J Rock Mech Eng, 2019, 38(Suppl 1): 2823
|
[25] |
李勇, 蔡卫兵, 朱维申, 等. 水力耦合作用下裂纹扩展演化机理的试验和颗粒流分析. 工程科学与技术, 2020, 52(3):21
Li Y, Cai W B, Zhu W S, et al. Experiment and particle flow analysis of crack propagation evolution mechanism under hydraulic coupling. Adv Eng Sci, 2020, 52(3): 21
|
[26] |
魏超, 朱维申, 李勇, 等. 岩石倾斜裂隙与水平裂隙扩展贯通试验及数值模拟研究. 岩土力学, 2019, 40(11):4533
Wei C, Zhu W S, Li Y, et al. Experimental study and numerical simulation of inclined flaws and horizontal fissures propagation and coalescence process in rocks. Rock Soil Mech, 2019, 40(11): 4533
|
[27] |
Min K S, Zhang Z, Ghassemi A. Numerical analysis of multiple fracture propagation in heterogeneous rock // Proceedings of 44th U. S. Rock Mechanics Symposium and 5th U. S. -Canada Rock Mechanics Symposium. Salt Lake City, 2010: 363
|
[28] |
Kamali A, Ghassemi A. Analysis of injection-induced shear slip and fracture propagation in geothermal reservoir stimulation. Geothermics, 2018, 76: 93 doi: 10.1016/j.geothermics.2018.07.002
|
[29] |
Yang Y N, Ren X Y, Zhou L, et al. Numerical study on competitive propagation of multi-perforation fractures considering full hydro-mechanical coupling in fracture-pore dual systems. J Petroleum Sci Eng, 2020, 191: 107109 doi: 10.1016/j.petrol.2020.107109
|
[30] |
Kamali A, Ghassemi A. Analysis of natural fracture shear slip and propagation in response to injection // Proceedings of Stanford Geothermal Workshop. Stanford, 2016: 22
|
[31] |
张铭. 低渗透岩石实验理论及装置. 岩石力学与工程学报, 2003, 22(6):919 doi: 10.3321/j.issn:1000-6915.2003.06.007
Zhang M. Theory and apparatus for testing low-permeability of rocks in laboratory. Chin J Rock Mech Eng, 2003, 22(6): 919 doi: 10.3321/j.issn:1000-6915.2003.06.007
|
[32] |
王鹏飞, 李长洪, 马学文, 等. 断层带不同含石率土石混合体渗流特性试验研究. 岩土力学, 2018, 39(S2): 53
Wang P F, Li C H, Ma X W, et al. Experimental study of seepage characteristics of soil-rock mixture with different rock contents in fault zone. Rock Soil Mech, 2018, 39(Suppl 2): 53
|
[33] |
Zhang Y, Wu X, Guo Q F, et al. Research on the mechanical properties and damage constitutive model of multi-shape fractured sandstone under hydro-mechanical coupling. Minerals, 2022, 12(4): 436 doi: 10.3390/min12040436
|
[1] | GUO De-yong, ZHANG Chao, ZHU Tong-gong. Effect of in-situ stress on the cracking and permeability enhancement in coal seams by deep-hole cumulative blasting[J]. Chinese Journal of Engineering, 2022, 44(11): 1832-1843. DOI: 10.13374/j.issn2095-9389.2022.01.25.003 |
[2] | YE Qing, SONG Jie, HOU Kun, GUO Zhi-yuan, XU Gui-zhi, DENG Zhan-feng, LI Bao-rang. Review of hydrogen permeation in PEM water electrolysis[J]. Chinese Journal of Engineering, 2022, 44(7): 1274-1281. DOI: 10.13374/j.issn2095-9389.2021.08.02.003 |
[3] | WANG Shuai, YU Qing-lei, WANG Ling. Effect of fracture roughness on permeability coefficient under uniaxial compression[J]. Chinese Journal of Engineering, 2021, 43(7): 915-924. DOI: 10.13374/j.issn2095-9389.2020.05.26.001 |
[4] | ZHANG Yu, YU Ting-ting, ZHANG Tong, LIU Shu-yan, ZHOU Jia-wen. Experimental study of the permeability evolution of fractured mudstone under complex stress paths[J]. Chinese Journal of Engineering, 2021, 43(7): 903-914. DOI: 10.13374/j.issn2095-9389.2020.05.27.005 |
[5] | ZHAO Hong-gang, ZHANG Dong-ming, BIAN Guang, LI Wen-pu. Deformation and permeability of sandstone at different cycling loading-unloading rates[J]. Chinese Journal of Engineering, 2017, 39(1): 133-140. DOI: 10.13374/j.issn2095-9389.2017.01.017 |
[6] | ZHAO Hong-gang, ZHANG Dong-ming, LIU Chao, DENG Bo-zhi, BIAN Guang, LI Wen-pu. Mechanical characteristics and permeability evolution rule of coal under loading-unloading conditions[J]. Chinese Journal of Engineering, 2016, 38(12): 1674-1680. DOI: 10.13374/j.issn2095-9389.2016.12.003 |
[7] | WANG Zhi-ping, ZHU Wei-yao, YUE Ming, GAO Ying, ZHAO Guang-jie, WANG Hai-qing. A method to predict the production of fractured horizontal wells in low/ultra-low permeability reservoirs[J]. Chinese Journal of Engineering, 2012, 34(7): 750-754. DOI: 10.13374/j.issn1001-053x.2012.07.001 |
[8] | LI Zhang-hong, ZHANG Li-xin, YAO Zuo-qiang, ZHANG Ji-liang, MIAO Sheng-jun. Permeability characteristics experiment and its mechanism analysis of two types of rocks[J]. Chinese Journal of Engineering, 2010, 32(2): 158-163. DOI: 10.13374/j.issn1001-053x.2010.02.022 |
[9] | WANG Ming, ZHU Wei-yao, LIU He, ZHANG Yu-guang, SONG Hong-qing. Theoretical analysis of two-phase porous flow in low-permeability oil reservoirs in a five-spot pattern[J]. Chinese Journal of Engineering, 2009, 31(12): 1511-1515,1530. DOI: 10.13374/j.issn1001-053x.2009.12.004 |
[10] | WANG Jinan, PENG Suping, MENG Zhaoping. Permeability Rule in Full Strain-stress Process of Rock under Triaxial Compression[J]. Chinese Journal of Engineering, 2001, 23(6): 489-491. DOI: 10.13374/j.issn1001-053x.2001.06.001 |
1. |
王丹丹,党志伟,石哲伟,方惠明,苏杰,刘春宇,霍超. 裂隙分布及井间距对增强型地热系统采热性能的影响. 地球物理学进展. 2024(03): 975-989 .
![]() | |
2. |
罗许林,王国柱,潘燕秋,石浩. 水力耦合作用下预制裂隙砂岩声发射试验研究. 实验技术与管理. 2024(10): 51-60 .
![]() | |
3. |
张吉雄,刘恒凤,周楠,闫浩,李百宜. 深部矿山相变蓄热功能充填采热构想及技术体系. 采矿与安全工程学报. 2023(05): 933-944 .
![]() | |
4. |
蔡美峰. 深部矿产与地热资源共采专刊序言. 工程科学学报. 2022(10): 1621-1622 .
![]() |